Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.

Protease cleavage of iron-transferrin augments pyocyanin-mediated endothelial cell injury via promotion of hydroxyl radical formation.

R A Miller, G T Rasmussen, C D Cox, B E Britigan
R A Miller
Research Service, VA Medical Center, Iowa City, Iowa 52246, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G T Rasmussen
Research Service, VA Medical Center, Iowa City, Iowa 52246, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C D Cox
Research Service, VA Medical Center, Iowa City, Iowa 52246, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B E Britigan
Research Service, VA Medical Center, Iowa City, Iowa 52246, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Although a number of bacterium- and host-derived factors have been suggested to contribute to the pathogenesis of Pseudomonas aeruginosa-associated tissue injury, the mechanism remains unclear. We have previously shown that protease modification of iron (Fe)-transferrin generates new iron chelates capable of catalyzing hydroxyl radical (.OH) formation from superoxide and hydrogen peroxide. The latter two oxidants are generated during redox cycling of another P. aeruginosa secretory product, pyocyanin. The lung is a major site of P. aeruginosa infection, with damage to local endothelial cells contributing to the pathogenesis of such infections. Endothelial cells are highly susceptible to oxidant-mediated injury. Therefore, we examined whether pseudomonas elastase-cleaved Fe-transferrin and pyocyanin synergistically enhance pulmonary artery endothelial cell injury via .OH formation. By measuring 51Cr release from cultured endothelial cell monolayers, pseudomonas elastase-cleaved Fe-transferrin significantly augmented cell injury resulting from cellular exposure to sublethal concentrations of pyocyanin. This enhancement in injury was not protease specific, as similar results were obtained with pyocyanin in combination with trypsin- or porcine pancreatic elastase-cleaved Fe-transferrin. The association of iron with the transferrin appeared to be necessary in this process. Supporting the involvement of .OH generation via the Haber-Weiss reaction in augmenting cell injury, catalase, dimethyl thiourea, superoxide dismutase, deferoxamine, and dimethyl sulfoxide significantly inhibited cell injury resulting from exposure to pyocyanin and protease-cleaved Fe-transferrin. Furthermore, spin trapping demonstrated the production of .OH in this cellular system. We conclude that .OH formation resulting from the interaction of protease-cleaved Fe-transferrin and endothelial cell redox cycling of pyocyanin may contribute to P. aeruginosa-associated tissue injury via endothelial cell injury.

PreviousNext
Back to top
Download PDF
Citation Tools
Protease cleavage of iron-transferrin augments pyocyanin-mediated endothelial cell injury via promotion of hydroxyl radical formation.
R A Miller, G T Rasmussen, C D Cox, B E Britigan
Infection and Immunity Jan 1996, 64 (1) 182-188; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Protease cleavage of iron-transferrin augments pyocyanin-mediated endothelial cell injury via promotion of hydroxyl radical formation.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Protease cleavage of iron-transferrin augments pyocyanin-mediated endothelial cell injury via promotion of hydroxyl radical formation.
R A Miller, G T Rasmussen, C D Cox, B E Britigan
Infection and Immunity Jan 1996, 64 (1) 182-188; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522