Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.

Roles for tumor necrosis factor alpha and nitric oxide in resistance of rat alveolar macrophages to Legionella pneumophila.

S J Skerrett, T R Martin
S J Skerrett
Medical Research Service, Veterans Affairs Medical Center, Seattle, Washington 98108, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T R Martin
Medical Research Service, Veterans Affairs Medical Center, Seattle, Washington 98108, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Legionella pneumophila is an intracellular parasite of alveolar macrophages, and recovery from legionellosis is associated with activation of alveolar macrophages to resist intracellular bacterial replication. Gamma interferon (IFN-gamma) is known to activate alveolar macrophages to suppress L. pneumophila, but the role of macrophage-derived cytokines in modulating alveolar macrophage resistance is unknown. To test the hypothesis that macrophage-derived mediators contribute to the resistance of alveolar macrophages to L. pneumophila, we incubated adherent rat alveolar macrophages with Escherichia coli lipopolysaccharide (LPS), recombinant tumor necrosis factor alpha (TNF-alpha), recombinant IFN-gamma, neutralizing anti-TNF-alpha, and/or N(G)-monomethyl-L-arginine (L-NMMA) for 6 h before challenge with L. pneumophila. Monolayers were sonically disrupted and quantitatively cultured on successive days. We also measured bioactive TNF-alpha release by infected macrophages in the presence or absence of IFN-gamma. We found that pretreatment of alveolar macrophages with LPS or, to a lesser degree, TNF-alpha, significantly inhibited intracellular replication of L. pneumophila. Both LPS and TNF-alpha acted synergistically with IFN-gamma at less than the maximally activating concentration to suppress L. pneumophila growth. The independent and coactivating effects of LPS were blocked by anti-TNF-alpha. Killing of L. pneumophila by IFN-gamma at the maximally activating concentration was inhibited by anti-TNF-alpha. The synergistic effects of TNF-alpha. or LPS in combination with IFN-gamma were inhibited by L-NMMA. Infected alveolar macrophages secreted TNF-alpha in proportion to the bacterial inoculum, and secretion of TNF-alpha was potentiated by cocultivation with IFN-gamma. These data indicate that secretion of TNF-alpha is an important autocrine defense mechanism of alveolar macrophages, serving to potentiate the activating effects of IFN-gamma through costimulation of nitric oxide synthesis.

PreviousNext
Back to top
Download PDF
Citation Tools
Roles for tumor necrosis factor alpha and nitric oxide in resistance of rat alveolar macrophages to Legionella pneumophila.
S J Skerrett, T R Martin
Infection and Immunity Aug 1996, 64 (8) 3236-3243; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Roles for tumor necrosis factor alpha and nitric oxide in resistance of rat alveolar macrophages to Legionella pneumophila.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Roles for tumor necrosis factor alpha and nitric oxide in resistance of rat alveolar macrophages to Legionella pneumophila.
S J Skerrett, T R Martin
Infection and Immunity Aug 1996, 64 (8) 3236-3243; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522