Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins.

K Rajakumar, C Sasakawa, B Adler
K Rajakumar
Department of Microbiology, Monash University, Clayton, Victoria, Australia. Kumar.Rajakumar@med.monash.edu.au
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Sasakawa
Department of Microbiology, Monash University, Clayton, Victoria, Australia. Kumar.Rajakumar@med.monash.edu.au
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Adler
Department of Microbiology, Monash University, Clayton, Victoria, Australia. Kumar.Rajakumar@med.monash.edu.au
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The she gene of Shigella flexneri 2a, which also harbors the internal enterotoxin genes set1A and set1B (F. R. Noriega, GenBank accession no. U35656, 1995) encodes a homolog of the virulence-related immunoglobulin A (IgA) protease-like family of secreted proteins, Tsh, EspC, SepA, and Hap, from an avian pathogenic Escherichia coli, an enteropathogenic E. coli, S. flexneri 5, and Haemophilus influenzae, respectively. To investigate the possibility that this locus was carried on a larger deletable element, the S. flexneri 2a YSH6000T she gene was insertionally disrupted by allelic exchange using a Tn10-derived tetAR(B) cassette. Then, to detect loss of the she locus, the tetracycline-resistant derivative was plated onto fusaric acid medium to select for tetracycline-sensitive revertants, which were observed to arise at a frequency of 10(-5) to 10(-6). PCR and pulsed-field gel electrophoresis analysis confirmed loss of the she::tetAR(B) locus in six independent tetracycline-sensitive isolates. Sample sequencing over a 25-kb region flanking she identified four insertion sequence-like elements, the group II intron-like sequence Sf.IntA, and the 3' end of a second IgA protease-like homolog, sigA, lying 3.6 kb downstream and in an orientation inverted with respect to she. The deletion was mapped to chromosomal NotI fragment A and determined to have a size of 51 kb. Hybridization with flanking probes confirmed that at least 17.7 kb of the 51-kb deletable element was unique to the seven she+ strains investigated, supporting the conclusion that she lay within a large pathogenicity island. The method described in this study, termed island probing, provides a useful tool to further the study of pathogenicity islands in general. Importantly, this approach could also be of value in constructing safer live attenuated bacterial vaccines.

PreviousNext
Back to top
Download PDF
Citation Tools
Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins.
K Rajakumar, C Sasakawa, B Adler
Infection and Immunity Nov 1997, 65 (11) 4606-4614; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins.
K Rajakumar, C Sasakawa, B Adler
Infection and Immunity Nov 1997, 65 (11) 4606-4614; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522