Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, U.S. Gov't, P.H.S.

Mycobacterial growth and sensitivity to H2O2 killing in human monocytes in vitro.

P Laochumroonvorapong, S Paul, C Manca, V H Freedman, G Kaplan
P Laochumroonvorapong
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Paul
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Manca
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V H Freedman
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Kaplan
Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The intracellular growth and susceptibilities to killing by H2O2 in cultured human monocytes of a number of mycobacterial species including laboratory strains and clinical isolates of Mycobacterium tuberculosis, and Mycobacterium bovis bacillus Calmette-Guerin (BCG) and a clinical isolate of Mycobacterium avium-M. intracellulare were examined. The clinical isolate of M. avium-M. intracellulare did not replicate in freshly explanted monocytes (generation time of >400 h); BCG replicated with a generation time of 95 h, and M. tuberculosis strains CDC551, H37Rv, and H37Ra replicated with generation times of 24, 35, and 37 h, respectively, during the 4-day growth assay. When cultured in monocytes for 4 days, the mycobacteria were variably sensitive to H2O2-induced killing. A positive correlation between the generation time and percent killing of intracellular bacilli was observed. By comparison, mycobacterial strains were similarly sensitive to H2O2 treatment in cell-free culture media and in sonicated cell suspensions. Using a number of inhibitors of reactive oxygen intermediates we determined that other than catalase the inhibitors tested did not affect H2O2-induced killing of intracellular mycobacteria. Our studies suggest that the killing of mycobacteria growing in human monocytes in vitro by the addition of exogenous H2O2 is dependent on the susceptibility to a peroxide-induced killing pathway as well as on the intracellular growth rate of the mycobacteria.

PreviousNext
Back to top
Download PDF
Citation Tools
Mycobacterial growth and sensitivity to H2O2 killing in human monocytes in vitro.
P Laochumroonvorapong, S Paul, C Manca, V H Freedman, G Kaplan
Infection and Immunity Nov 1997, 65 (11) 4850-4857; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mycobacterial growth and sensitivity to H2O2 killing in human monocytes in vitro.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Mycobacterial growth and sensitivity to H2O2 killing in human monocytes in vitro.
P Laochumroonvorapong, S Paul, C Manca, V H Freedman, G Kaplan
Infection and Immunity Nov 1997, 65 (11) 4850-4857; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522