Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article

A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans.

R Petter, Y C Chang, K J Kwon-Chung
R Petter
Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y C Chang
Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K J Kwon-Chung
Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The SNF1 gene of Saccharomyces cerevisiae (ScSNF1) is essential for the derepression of catabolic repression. We report here the isolation and characterization of an SNF1 homolog from Candida albicans (CaSNF1) which is apparently essential for the viability of this organism. The putative amino acid sequence of CaSNF1 has 68% identity with that of ScSNF1 and can restore the S. cerevisiae snf1 delta mutant's ability to utilize sucrose. Disruption of one of the CaSNF1 alleles resulted in morphological changes and decreased growth rates but did not modify the carbon source utilization pattern. Repetitive unsuccessful attempts to generate a snf1/snf1 homozygote by disruption of the second allele, using various vectors and approaches, suggest the lethal nature of this mutation. Integration into the second allele was possible only when a full-length functional SNF1 sequence was reassembled, further supporting this hypothesis and indicating that the indispensability of Snf1p prevented the isolation of snf1/snf1 mutants. The mutant bearing two disrupted SNF1 alleles and the SNF1 functional sequence maintained its ability to utilize sucrose and produced stellate colonies with extensive hyphal growth on agar media. It was demonstrated that in a mouse model, the virulences of this mutant and the wild-type strain are similar, suggesting that hyphal growth in vitro is not an indicator for higher virulence.

PreviousNext
Back to top
Download PDF
Citation Tools
A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans.
R Petter, Y C Chang, K J Kwon-Chung
Infection and Immunity Dec 1997, 65 (12) 4909-4917; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
Share
A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans.
R Petter, Y C Chang, K J Kwon-Chung
Infection and Immunity Dec 1997, 65 (12) 4909-4917; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522