Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection.

C A Nickerson, R Curtiss 3rd
C A Nickerson
Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Curtiss 3rd
Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The sigma factor RpoS mediates the stationary-phase expression of a large group of genes, including those involved in resistance to a variety of environmental stresses, such as starvation, oxidation, and low pH. In addition, RpoS has been shown to regulate Salmonella virulence. In Salmonella typhimurium, RpoS controls the expression of the Salmonella plasmid virulence (spv) genes, which are required for systemic infection. However, the mechanism by which RpoS affects the pathogenicity of Salmonella remains incompletely defined. In this study, we focused on the ability of rpoS to affect the early stages of the infection process of S. typhimurium. An rpoS mutant of S. typhimurium exhibited wild-type abilities to attach to and invade Int-407 cells and J774 macrophage-like cells. In addition, rpoS did not affect the intracellular survival of S. typhimurium in either J774 macrophage-like cells or rat bone marrow-derived macrophages. However, the rpoS mutant demonstrated a decreased ability to colonize murine Peyer's patches after oral inoculation than its wild-type virulent parent strain showed. In addition, virulence plasmid-cured derivatives of the rpoS mutant were recovered in lower numbers from murine Peyer's patches than were plasmid-cured derivatives of the isogenic wild-type S. typhimurium. This indicates that RpoS regulation of chromosomally encoded genes is important for colonization of the gut-associated lymphoid tissue (GALT) by S. typhimurium. Microscopic analysis of histological sections taken from Peyer's patches after peroral infection of mice showed that, unlike its wild-type virulent parent strain, the isogenic rpoS mutant did not destroy the follicle-associated epithelium of the GALT. Furthermore, the rpoS mutant demonstrated a decreased ability to adhere to histological sections of murine Peyer's patches than its wild-type parent showed. Our data provide evidence for a role of RpoS in the interaction of Salmonella with cells of the GALT, specifically the Peyer's patches. This implicates the involvement of rpoS in the initial stages of systemic infection by Salmonella as opposed to infection leading to gastroenteritis.

PreviousNext
Back to top
Download PDF
Citation Tools
Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection.
C A Nickerson, R Curtiss 3rd
Infection and Immunity May 1997, 65 (5) 1814-1823; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection.
C A Nickerson, R Curtiss 3rd
Infection and Immunity May 1997, 65 (5) 1814-1823; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522