Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Molecular Genomics

Factors Characterizing Staphylococcus epidermidis Invasiveness Determined by Comparative Genomics

Yufeng Yao, Daniel E. Sturdevant, Amer Villaruz, Lin Xu, Qian Gao, Michael Otto
Yufeng Yao
1Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Hamilton, Montana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel E. Sturdevant
1Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Hamilton, Montana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amer Villaruz
1Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Hamilton, Montana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lin Xu
2Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qian Gao
2Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Otto
1Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Hamilton, Montana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: motto@niaid.nih.gov
DOI: 10.1128/IAI.73.3.1856-1860.2005
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Virulence mechanisms of the leading nosocomial pathogen Staphylococcus epidermidis are poorly understood. We used microarray-based genome-wide comparison of clinical and commensal S. epidermidis strains to identify putative virulence determinants. Our study revealed high genetic variability of the S. epidermidis genome, new markers for invasiveness of S. epidermidis, and potential targets for drug development against S. epidermidis infections.

Staphylococcus epidermidis is the most prevalent cause of nosocomial infections, costing the public health system ∼$1 billion/year in the United States alone (18). Usually an innocuous commensal microorganism on human skin, S. epidermidis can cause severe infection after penetration of epidermal and mucosal barriers, which frequently occurs in the hospital during the insertion of indwelling medical devices (18). S. epidermidis mostly lacks components that are easily recognized as virulence factors, such as toxins or aggressive degradative exoenzymes (18). Furthermore, genetic manipulation of S. epidermidis is very difficult. For these reasons we have a serious lack of knowledge about the basis of S. epidermidis virulence. However, discovering the genes that determine success of S. epidermidis as an opportunistic pathogen is a crucial prerequisite step for designing therapeutic interventions directed to control S. epidermidis infections.

In contrast to studies performed with some other pathogenic bacteria, approaches using in vivo expression technology to identify virulence genes in Staphylococcus have proven problematical (3, 9). Low infectivity and the resulting difficulty to establish reproducible animal infection models further complicate the use of this technology with S. epidermidis. Therefore, we used comparative genomics of clinical and benign strains as an alternative approach to identify S. epidermidis virulence determinants. This approach has been used to characterize virulence factors in the opportunistic pathogen Pseudomonas aeruginosa (20). In our study, 22 strains isolated from prostheses infections and 20 strains isolated from the skin of healthy individuals were analyzed by DNA/DNA hybridization of genomic DNA on a whole-genome S. epidermidis microarray. The microarray contained a 70mer oligonucleotide of every gene found in the genome of S. epidermidis RP62A (sequence available at www.tigr.org ). We have described synthesis and characterization of the microarray previously (21). Specifically, we have verified that all oligonucleotides hybridize with control DNA isolated from strain RP62A. The strains used in the present study were a subset of an essentially nonclonal collection (5) and were further screened to exclude related strains that were sometimes found in the same patient. We determined the degree of relatedness of the strains by microarray analysis (Fig. 1). As anticipated from the preselection, microarray data confirmed that the strains were not clonal. Results of the distribution of individual genes were analyzed by Fisher's exact test. A P value of <0.05 was considered significant.

A total of 939 (36%) genes in the control strains and 425 (16%) genes among clinical strains lacked a hybridization signal in at least one strain, indicating absence or significant mutation. These data reveal considerable, previously unknown genetic variability of the S. epidermidis genome. A total of 59 genes showed a significantly disproportionate distribution between the two groups (Table 1 and Table 2). Also, 39 genes were found to be more frequent among clinical strains than among commensal strains (Table 1). Importantly, these genes included the ica locus, which encodes the biosynthetic machinery for the exopolysaccharide PIA (6), and genes related to the insertion sequence IS256. ica and IS256 are among the very few factors that have been described as determinants of virulence and markers for invasiveness of S. epidermidis (6, 7, 15, 23). Notably, these findings validated our approach and further confirmed the use of ica and IS256 as markers for invasiveness of S. epidermidis. However, many other genes revealed an even more significant difference. Particularly, a gene encoding a 190-kDa cell surface protein with similarity to a streptococcal hemagglutinin binding protein showed the most pronounced difference. It was present in 16 of 22 (73%) clinical strains but in only 5 of 20 (25%) control strains (P = 0.0026). We validated the distribution of the gene coding for this protein by analytical PCR, using a different strain collection containing strains from different infections and skin strains from Shanghai, China (Table 3). The results confirmed that the gene occurred significantly more frequently among clinical isolates than among isolates from healthy individuals (P = 0.03).

So-called MSCRAMMs (for “microbial surface components recognizing adhesive matrix molecules”) are believed to play an eminent role in bacterial pathogenesis during the establishment of infection (13). S. epidermidis MSCRAMMs, e.g., the fibrinogen-binding protein Fbe, are presently under intense investigation for use as drug targets or antigens for vaccine development (12, 14). Many but not all MSCRAMMs have an LPXTG motif for linkage to the bacterial cell surface (10). The 190-kDa protein gene lacked a clearly distinguishable LPXTG motif but revealed repeat regions and a putative cell wall binding domain that are typical for MSCRAMMs (13). We detected 10 putative MSCRAMM genes with an LPXTG motif in the S. epidermidis genome. Remarkably, 8 of these 10 putative MSCRAMM genes were absent from at least one strain in our study, as previously shown for the sdrF gene (11), indicating high genetic variability for this class of surface proteins (data not shown). The two MSCRAMMs found to be present in all strains were SE0828 and SE1682, two yet uncharacterized proteins. However, the 190-kDa protein gene was the only putative MSCRAMM that appeared significantly more frequently among invasive strains, suggesting a crucial role for this protein in S. epidermidis pathogenesis.

Several genes with a previously proposed role in virulence were more frequently present in invasive strains. For example, the lipoprotein signal peptidase LspA is required for the secretion of lipoproteins, which represent surface-attached extracellular proteins that may be involved in various virulence mechanisms (2, 19). Furthermore, SsaA is an abundant extracellular antigenic protein in S. epidermidis for which a role in pathogenesis has been proposed (8). Moreover, we detected two genes encoding murein synthesis enzymes in this group, a phosphomuraminic acid pentapeptide translocase-encoding gene and the murF gene. murF and other murein synthesis genes are critical for bacterial survival, and their gene products are under current investigation as potential novel drug targets (4). The absence of a DNA hybridization signal for an essential gene like murF is likely due to significant gene mutation. A mutated murF has been shown to influence methicillin resistance in Staphylococcus aureus (17). A similar role of murF in S. epidermidis might cause the observed lower gene frequency in control strains compared to clinical strain results. Taken together, our data help to emphasize the importance of specific genes among a variety of proposed virulence factors for further investigation of S. epidermidis pathogenesis.

The genes that were more frequent in invasive strains comprised several resistance genes such as genes coding for an antibiotic transport-associated protein and the arsenic efflux pump ArsB (1). In accordance with the latter finding, the gene coding for ArsD, the trans-acting repressor of the arsenic resistance operon, was less common among invasive strains. On the other hand, some putative antibiotic resistance genes showed a significantly higher frequency in the control group. Further, a proline-betain transporter homolog gene was more frequent among invasive strains than in commensal strains, which is in contrast to the assumption that an osmoprotective factor is required during life on the skin rather than during infection. Moreover, recent findings indicate that the arsenic resistance operon might also be involved in osmoprotection (16). These data suggest interesting, previously unexpected roles for antibiotic resistance genes and osmoprotection factors in S. epidermidis.

In conclusion, our study revealed high genetic variability of S. epidermidis as a species. We identified several markers for S. epidermidis invasiveness, which included proposed virulence factors, confirming the validity of our approach and the role in pathogenesis of these factors. Most importantly, our study also identified genes with unknown function for use as potential novel drug targets. We are presently investigating the contribution to virulence of several of the detected putative novel virulence factors.

FIG. 1.
  • Open in new tab
  • Download powerpoint
FIG. 1.

Relatedness of strains used for microarray-based investigation of gene distribution in this study. Strain names for strains from infections are according to Galdbart et al. (5), by whom the strains were first described. Control strains are numbered from c1 to c22 and are also from that study. Absence of genes is shown in blue; presence of genes is shown in yellow and red. A dendrogram is shown on the right. The analysis was performed with GeneSpring software.

View this table:
  • View inline
  • View popup
TABLE 1.

Genes more frequent among invasive strains of S. epidermidis

View this table:
  • View inline
  • View popup
TABLE 2.

Genes more frequent among commensal strains of S. epidermidis

View this table:
  • View inline
  • View popup
TABLE 3.

Distribution of gene SE2251 in strains from Huashan hospital, Shanghai, determined by analytical PCR

ACKNOWLEDGMENTS

We thank Donald J. Meyer, Partek Inc., for statistical analysis, Nevine El Solh, Institut Pasteur, for S. epidermidis strains, and Frank R. DeLeo for critically reading the manuscript.

FOOTNOTES

    • Received 27 July 2004.
    • Returned for modification 10 September 2004.
    • Accepted 17 October 2004.
  • Copyright © 2005 American Society for Microbiology

REFERENCES

  1. 1.↵
    Broer, S., G. Ji, A. Broer, and S. Silver. 1993. Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258. J. Bacteriol.175:3480-3485.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    Cabanes, D., P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol.10:238-245.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    Coulter, S. N., W. R. Schwan, E. Y. Ng, M. H. Langhorne, H. D. Ritchie, S. Westbrock-Wadman, W. O. Hufnagle, K. R. Folger, A. S. Bayer, and C. K. Stover. 1998. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol.30:393-404.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    El Zoeiby, A., F. Sanschagrin, and R. C. Levesque. 2003. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol.47:1-12.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    Galdbart, J. O., A. Morvan, N. Desplaces, and N. el Solh. 1999. Phenotypic and genomic variation among Staphylococcus epidermidis strains infecting joint prostheses. J. Clin. Microbiol.37:1306-1312.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    Heilmann, C., O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Götz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol.20:1083-1091.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    Kozitskaya, S., S. H. Cho, K. Dietrich, R. Marre, K. Naber, and W. Ziebuhr. 2004. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect. Immun.72:1210-1215.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    Lang, S., M. A. Livesley, P. A. Lambert, W. A. Littler, and T. S. Elliott. 2000. Identification of a novel antigen from Staphylococcus epidermidis. FEMS Immunol. Med. Microbiol.29:213-220.
    OpenUrlCrossRefPubMed
  9. 9.↵
    Lowe, A. M., D. T. Beattie, and R. L. Deresiewicz. 1998. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol. Microbiol.27:967-976.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    Mazmanian, S. K., G. Liu, H. Ton-That, and O. Schneewind. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science285:760-763.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    McCrea, K. W., O. Hartford, S. Davis, D. N. Eidhin, G. Lina, P. Speziale, T. J. Foster, and M. Hook. 2000. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology146(Pt. 7):1535-1546.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    Nilsson, M., L. Frykberg, J. I. Flock, L. Pei, M. Lindberg, and B. Guss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun.66:2666-2673.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    Patti, J. M., B. L. Allen, M. J. McGavin, and M. Hook. 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol.48:585-617.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    Pei, L., and J. I. Flock. 2001. Lack of fbe, the gene for a fibrinogen-binding protein from Staphylococcus epidermidis, reduces its adherence to fibrinogen coated surfaces. Microb. Pathog.31:185-193.
    OpenUrlCrossRefPubMed
  15. 15.↵
    Rupp, M. E., P. D. Fey, C. Heilmann, and F. Götz. 2001. Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J. Infect. Dis.183:1038-1042.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    Scybert, S., R. Pechous, S. Sitthisak, M. J. Nadakavukaren, B. J. Wilkinson, and R. K. Jayaswal. 2003. NaCl-sensitive mutant of Staphylococcus aureus has a Tn917-lacZ insertion in its ars operon. FEMS Microbiol. Lett.222:171-176.
    OpenUrlPubMed
  17. 17.↵
    Sobral, R. G., A. M. Ludovice, S. Gardete, K. Tabei, H. De Lencastre, and A. Tomasz. 2003. Normally functioning murF is essential for the optimal expression of methicillin resistance in Staphylococcus aureus. Microb. Drug Resist.9:231-241.
    OpenUrlCrossRefPubMed
  18. 18.↵
    Vuong, C., and M. Otto. 2002. Staphylococcus epidermidis infections. Microbes Infect.4:481-489.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    Witke, C., and F. Götz. 1995. Cloning and nucleotide sequence of the signal peptidase II (lsp)-gene from Staphylococcus carnosus. FEMS Microbiol. Lett.126:233-239.
    OpenUrlCrossRefPubMed
  20. 20.↵
    Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA100:8484-8489.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    Yao, Y., D. E. Sturdevant, and M. Otto. 2005. Genome-wide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into S. epidermidis biofilm pathophysiology and the role of phenol-soluble modulins in biofilm formation. J. Infect. Dis.191:289-298.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.
    Zhang, Y. Q., S. X. Ren, H. L. Li, Y. X. Wang, G. Fu, J. Yang, Z. Q. Qin, Y. G. Miao, W. Y. Wang, R. S. Chen, Y. Shen, Z. Chen, Z. H. Yuan, G. P. Zhao, D. Qu, A. Danchin, and Y. M. Wen. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol.49:1577-1593.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    Ziebuhr, W., V. Krimmer, S. Rachid, I. Lossner, F. Götz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol.32:345-356.
    OpenUrlCrossRefPubMedWeb of Science
View Abstract
PreviousNext
Back to top
Download PDF
Citation Tools
Factors Characterizing Staphylococcus epidermidis Invasiveness Determined by Comparative Genomics
Yufeng Yao, Daniel E. Sturdevant, Amer Villaruz, Lin Xu, Qian Gao, Michael Otto
Infection and Immunity Feb 2005, 73 (3) 1856-1860; DOI: 10.1128/IAI.73.3.1856-1860.2005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Factors Characterizing Staphylococcus epidermidis Invasiveness Determined by Comparative Genomics
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Factors Characterizing Staphylococcus epidermidis Invasiveness Determined by Comparative Genomics
Yufeng Yao, Daniel E. Sturdevant, Amer Villaruz, Lin Xu, Qian Gao, Michael Otto
Infection and Immunity Feb 2005, 73 (3) 1856-1860; DOI: 10.1128/IAI.73.3.1856-1860.2005
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Bacterial Proteins
Genome, Bacterial
genomics
Oligonucleotide Array Sequence Analysis
Staphylococcus epidermidis

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522