Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Microbial Immunity and Vaccines

Genome-Wide Identification of Virulence Genes in Erysipelothrix rhusiopathiae: Use of a Mutant Deficient in a tagF Homolog as a Safe Oral Vaccine against Swine Erysipelas

Yoshihiro Shimoji, Yohsuke Ogawa, Manae Tsukio, Kazumasa Shiraiwa, Sayaka Nishikawa, Masahiro Eguchi
Guy H. Palmer, Editor
Yoshihiro Shimoji
National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, JapanResearch Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yohsuke Ogawa
National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Manae Tsukio
National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazumasa Shiraiwa
National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sayaka Nishikawa
National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahiro Eguchi
National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guy H. Palmer
Washington State University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/IAI.00673-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Swine erysipelas is caused by the Gram-positive pathogen Erysipelothrix rhusiopathiae. The swine erysipelas live vaccine in Japan, the E. rhusiopathiae Koganei 65-0.15 strain (Koganei), has been reported to cause arthritis and endocarditis. To develop a vaccine with increased safety, we used a virulent Fujisawa strain to construct transposon mutants for a total of 651 genes, which covered 38% of the coding sequence of the genome. We screened the mutants for attenuation by inoculating mice with 108 CFU of each mutant and subsequently assessed protective capability by challenging the surviving mice with 103 CFU (102 times the 50% lethal dose) of the Fujisawa strain. Of the 23 attenuated mutants obtained, 6 mutants were selected and evaluated for protective capability in pigs by comparison to that of the Koganei strain. A mutant in the ERH_0432 (tagF) gene encoding a putative CDP-glycerol glycerophosphotransferase was found to be highly attenuated and to induce humoral and cell-mediated immune responses in conventional pigs. An in-frame deletion mutant of the gene, the Δ432 mutant, was constructed, and attenuation was further confirmed in germfree piglets; three of four piglets subcutaneously inoculated with 109 CFU of the Δ432 mutant showed no apparent clinical symptoms, whereas all four of the Koganei-inoculated piglets died 3 days after inoculation. It was confirmed that conventional pigs inoculated orally or subcutaneously with the Δ432 strain were almost completely protected against lethal challenge infection. Thus, the tagF homolog mutant of E. rhusiopathiae represents a safe vaccine candidate that can be administered via the oral and subcutaneous routes.

FOOTNOTES

    • Received 26 August 2019.
    • Returned for modification 12 September 2019.
    • Accepted 16 September 2019.
    • Accepted manuscript posted online 23 September 2019.
  • Supplemental material for this article may be found at https://doi.org/10.1128/IAI.00673-19.

  • Copyright © 2019 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
Genome-Wide Identification of Virulence Genes in Erysipelothrix rhusiopathiae: Use of a Mutant Deficient in a tagF Homolog as a Safe Oral Vaccine against Swine Erysipelas
Yoshihiro Shimoji, Yohsuke Ogawa, Manae Tsukio, Kazumasa Shiraiwa, Sayaka Nishikawa, Masahiro Eguchi
Infection and Immunity Nov 2019, 87 (12) e00673-19; DOI: 10.1128/IAI.00673-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Genome-Wide Identification of Virulence Genes in Erysipelothrix rhusiopathiae: Use of a Mutant Deficient in a tagF Homolog as a Safe Oral Vaccine against Swine Erysipelas
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
Share
Genome-Wide Identification of Virulence Genes in Erysipelothrix rhusiopathiae: Use of a Mutant Deficient in a tagF Homolog as a Safe Oral Vaccine against Swine Erysipelas
Yoshihiro Shimoji, Yohsuke Ogawa, Manae Tsukio, Kazumasa Shiraiwa, Sayaka Nishikawa, Masahiro Eguchi
Infection and Immunity Nov 2019, 87 (12) e00673-19; DOI: 10.1128/IAI.00673-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Erysipelothrix rhusiopathiae
swine erysipelas
wall teichoic acid
oral vaccines

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522