Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Pathogenic Mechanisms, Ecology, and Epidemiology

Oxidative Peptide Cleavage and Decarboxylation by the MPO-H2O2-Cl− Antimicrobial System

Ratnam J. Selvaraj, Benoy B. Paul, Robert R. Strauss, A. Alice Jacobs, Anthony J. Sbarra
Ratnam J. Selvaraj
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benoy B. Paul
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert R. Strauss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Alice Jacobs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony J. Sbarra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The antimicrobial activities of the myeloperoxidase-H2O2-halide system have received considerable attention recently. The precise mechanism by which this system exerts its lethal activity is presently not clear. In an effort to learn more regarding a possible mechanism of action, the susceptibility of protein-bound amino acids to enzymatic attack by myeloperoxidase (MPO) in the presence of chloride ions was investigated. [1, 7-14C]diaminopimelic acid (DAP) was incorporated into Escherichia coli W-7 proteins with little randomization of the radioactivity. Under appropriate conditions, it was observed that the MPO-H2O2-halide system released approximately 94% of the radioactivity from labeled bacteria. This would indicate that, in addition to decarboxylation, peptide bonds are also split during this reaction. The oxidative decarboxylation of DAP-labeled bacteria by MPO (i) is Cl− dependent, (ii) has an acid pH optimum, (iii) requires a specific concentration of H2O2 for activity, (iv) reaches a plateau by 25 min, and (v) is markedly inhibited by taurine. These properties are similar to those observed with free amino acids. It appears from these data that MPO can not only decarboxylate free and bound amino acids, yielding aldehydes, but also it can actively participate in oxidative peptide cleavage. Both of those activities may play a critical role in the microbicidal action of the leukocyte.

FOOTNOTES

  • ↵1 Present address: Department of Microbiology, Albert Einstein Medical Center, Philadelphia, Pa. 19141.

  • ↵2 Present address: University of Minnesota School of Medicine, Duluth, Minn. 55812.

  • Copyright © 1974 American Society for Microbiology
PreviousNext
Back to top
Download PDF
Citation Tools
Oxidative Peptide Cleavage and Decarboxylation by the MPO-H2O2-Cl− Antimicrobial System
Ratnam J. Selvaraj, Benoy B. Paul, Robert R. Strauss, A. Alice Jacobs, Anthony J. Sbarra
Infection and Immunity Feb 1974, 9 (2) 255-260; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Oxidative Peptide Cleavage and Decarboxylation by the MPO-H2O2-Cl− Antimicrobial System
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Oxidative Peptide Cleavage and Decarboxylation by the MPO-H2O2-Cl− Antimicrobial System
Ratnam J. Selvaraj, Benoy B. Paul, Robert R. Strauss, A. Alice Jacobs, Anthony J. Sbarra
Infection and Immunity Feb 1974, 9 (2) 255-260; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522