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ing the hwp12/hwp12 and chs32/chs32 mutants (2, 13, 25).
These results indicate that the fungal burden does not neces-
sarily predict the virulence phenotype. However, these results
do suggest that the RIM101 pathway is not required for colo-
nization of the kidney but is required for maintenance of in-
fection.

We did find a strong correlation among the damage, histo-
logical, and virulence results. In fact, the histological and dam-
age results appear to predict the virulence result of RIM101
pathway mutants. Similar results are seen for mutations affect-
ing HWP1 and SAP2 (11, 12, 24, 25). Thus, we found that the
histological and damage phenotypes are good predictors of the
virulence phenotype.

One useful finding to come from these studies is that our
wild-type strain appears to maintain normal virulence. We had
previously created a triply marked auxotrophic strain to allow
for rapid PCR-directed gene knockouts (two markers) and
complementation (one marker). Here, we have analyzed host
interactions with a prototrophic derivative of BWP17,
DAY185. Mice infected with DAY185 appear to have survival
times similar to those of mice infected with SC5314 and a
related strain, CAI12 (23, 25). DAY185 stimulates endothelial
damage to levels similar to those reported for SC5314 (12).
Further, DAY185 grows well in kidneys and elicits a strong
immune response. Thus, the BWP17 strain is useful to gener-
ate mutants rapidly and for consequent in vivo analyses as well.

What is the function of the RIM101 pathway in pathogene-
sis? Our results argue that the RIM101 pathway is not simply
required for growth in vivo. We see that RIM101 pathway
mutants have a defect in fungal burden compared to the wild
type. However, if we compare the rim82/rim82 and rim82/
rim82 1RIM101-405 mutants, which produce similar fungal
burdens, we find that the rim82/rim82 1RIM101-405 strain
behaves like the wild type in the other assays. Thus, a defect in
growth is not sufficient to explain the role of the RIM101
pathway in pathogenesis. The rim82/rim82 1RIM101-405
strain has an activity lacking in the rim82/rim82 strain. We
suggest that stimulation of host cell damage may be a candi-
date for this activity. Filler et al. have suggested that endothe-
lial cell damage may be required to stimulate expression of
cytokines and leukocyte adhesion molecules (6). If similar
events occur in the kidney, then we predict that mutants that
inflict less cell damage would elicit a weaker immune response.
This is exactly what we see. Thus, we propose that one function
of the RIM101 pathway in pathogenesis is to regulate the
expression of genes that stimulate host cell damage.
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