






bacterial motility but are not essential, suggesting that recruit-
ed profilin helps to increase the local concentration of ATP-
actin (41). Profilin exists in two isoforms in mammalian cells,
profilin I and II, and profilin I has a greater affinity for N-
WASP (Kd � 60 nM) than does profilin II (Kd � 400 nM) (79).
Hence, the role of profilin I in the actin-based motility of
intracellular Shigella has recently been investigated (49). On
overexpression of a profilin H133S mutant defective in inter-
action with the PRR of N-WASP, including poly-L-proline,
Shigella motility is significantly decreased. Similarly, depletion
of profilin from Xenopus egg extracts results in a decrease in
bacterial motility that is rescued by adding back profilin I but
not by the H133S mutant. Consistent with this, on overexpres-
sion of an N-WASP mutant lacking the PRR unable to interact
with profilin, the actin tail formation of intracellular Shigella
was almost completely abolished. In N-WASP-depleted ex-
tracts, the addition of wild type N-WASP but not the N-WASP
mutant restores bacterial motility, indicating that profilin as-
sociated with N-WASP is an essential host factor for support-
ing rapid spreading of Shigella in infected cells (49). The role
of the PRR of WASP family members in interaction with
profilin or more generally in activation of actin assembly re-
mains unclear. Deletion of the PRR of WAVE has a minimal
effect on actin assembly (48), and profilin inhibits rather than
stimulates actin polymerization in the presence of a WAVE
fragment that contains PRR (43). However, in the presence of

N-WASP and the Arp2/3 complex, Cdc42-stimulated nuclea-
tion of actin is enhanced by profilin (98). When the concen-
tration of free monomeric actin is held constant, the stimula-
tion of actin assembly by a C-terminal fragment of N-WASP is
enhanced by profilin, even though the C-terminal fragment of
N-WASP does not contain PRR that binds profilin (98), sug-
gesting that a part of the enhancement that is mediated by
profilin may be independent of binding to N-WASP.

IS THE Arp2/3 COMPLEX A COMMON PLAYER IN
PATHOGENS FOR ACTIN-BASED MOVEMENT IN

OR ATTACHMENT TO EPITHELIAL CELLS?

L. monocytogenes, spotted fever group Rickettsia, and the
vaccinia virus also induce polarized actin assembly at the sur-
face to gain propulsive force in infected cells. The Listeria
surface protein ActA, which is accumulated over the posterior
bacterial body during movement in host cells, is crucial for
actin-based motility (11, 32, 33, 54). ActA has multiple func-
tional domains and interacts with several host factors, the
Arp2/3 complex, Drosophila Enabled (Ena)/VASP family pro-
teins and PtdIns(4,5)P2 (5, 6, 19, 75, 77, 94). The N-terminal
domain of ActA (residues 30 to 263) can not only interact with
the Arp2/3 complex but can also stimulate its actin nucleation
activity (60, 74, 95, 99). Thus, unlike VirG of Shigella, ActA of
Listeria interacts directly with and stimulates the Arp2/3 com-

FIG. 2. Accumulation of the Arp2/3 complex at the actin comet tail of intracellular Shigella (A, B, and C) and Listeria (D, E, and F) in infected
HeLa cells. (A and D) The Arp2/3 complex was visualized with fluorescein isothiocyanate-labeled anti-Arp3 antibody. (B and E) Actin filaments
were visualized with rhodamine-phalloidin. (C and F) The yellow color in the merged images indicates colocalization between the Arp2/3 complex
(green) and actin filaments (red). Arrows indicate an intracellular bacterium forming an actin comet tail. Bar, 10 �m.
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plex and does not require N-WASP as an intermediate. The
central proline-rich domain (residues 264 to 390) interacts with
Ena/VASP family proteins, which in turn recruit actin fila-
ments and profilin (55, 59, 75). Although the precise role of the
central proline-rich domain remains unclear, the region con-
tributes to the rate of movement and the percentage of moving
bacteria (36, 37, 75). Ena/VASP family proteins bound to ActA
are also proposed to mediate insertional actin polymerization
on the surface of Listeria. However, a recent report has indi-
cated that Ena/VASP family proteins negatively regulate the
cell crawling mediated by lamellipodial membrane extension
(1), suggesting that the role of Ena/VASP family proteins
in Listeria motility is not necessarily the same as that in the
formation of lamellipodia in locomoting cells. A recent report
has indicated that ActA possesses two actin monomer-binding
sites (residues 85 to 104 and 121 to 138) at the N terminus of
the Arp2/3 complex-binding site (residues 144 to 170) (99).
Interestingly, these motifs in the N-terminal ActA sequence
share functional similarity to that of the VCA domain of
N-WASP, since the VCA domain also has two actin monomer-

binding verprolin homology domains and an Arp2/3 complex-
interacting site (46). These tandem verprolin homology do-
mains have been identified as the essential parts for mediating
the strong activation of Arp2/3 complex-directed actin poly-
merization (97). Therefore, it is assumed that the two actin
monomer-binding motifs of ActA sharing the function en-
coded by the VCA region of N-WASP serve to recruit and
activate the Arp2/3 complex, thus mediating rapid actin nucle-
ation and elongation with the aid of profilin recruited by VASP
bound to the proline-rich repeats of ActA on Listeria in host
cells.

Interestingly, the system underlying the intracellular move-
ment of Rickettsia is strikingly different from that in Shigella or
Listeria, since the actin comet tail of Rickettsia does not have
the dendritic filamentous actin network that is generated by
actin tails from motile Shigella and Listeria or during the for-
mation of lamellipodia in mammalian cells (Fig. 3) (24, 89). In
fact, neither N-WASP nor the Arp2/3 complex has been de-
tected at Rickettsia actin tails yet (24, 89), although whether the
factors would be below the limit of detection in the assay
system awaits further investigation. Although the mechanism
of Rickettsia movement including the bacterial factor(s) medi-
ating actin assembly in mammalian cells is still to be charac-
terized, a unique process for actin polymerization compared to
that in Shigella or Listeria may take part in the actin-based
movement of Rickettsia in mammalian cells.

The enveloped form of vaccinia virus, called intracellular
enveloped virus (IEV), also induces formation of an actin
comet tail in infected cells (9). The mechanism of the actin tail
formation of IEV resembles that of Shigella VirG more than
that of Listeria ActA with respect to the involvement of N-
WASP. However, vaccinia virus movement occurs depending
on protein tyrosine phosphorylation of one of the surface pro-
teins, called A36R (16). The tyrosine-phosphorylated A36R
links to N-WASP but does so indirectly via binding to adapter
proteins such as Nck and WIP (50). Unlike Shigella actin-based
motility, the activation of N-WASP is independent of Cdc42
(50).

Enteropathogenic E. coli (EPEC) colonizes epithelial cells
in the human small intestine by provoking effacement of the
microvilli and intimating attachment to the host cells, a prom-
inent pathogenic feature called attaching and effacing (53).
EPEC normally cannot invade epithelial cells and rather in-
duces the formation of an actin pedestal structure beneath the
bacterium attached to the host cell surface (23, 68, 88). To
achieve an intimate attachment, EPEC delivers a set of effector
proteins such as Tir, EspB, and EspD into the host cytoplasm
via the type III secretion machinery (14, 26, 34, 85, 88, 90, 96).
Tir has been indicated to play a major role in mediating actin
polymerization in the host cells, since after its translocation Tir
is tyrosine phosphorylated and subsequently inserted into the
host plasma membrane to specifically interact with the bacte-
rial surface protein intimin (29, 30). Meanwhile, the cytoplas-
mic domains of the inserted Tir can recruit N-WASP (or
WASP) and the Arp2/3 complex, thus mediating actin poly-
merization and leading to the formation of dynamic actin ped-
estals (28). However, the link between Tir and N-WASP is
indirect, and it may take place via binding to Chp, a Cdc42-like
GTPase (28). In this sense, the situation of Tir would be similar
to that of vaccinia virus A36R.

FIG. 3. Electron micrographs of the actin assembly formed by
E. coli expressing VirG in Xenopus egg extracts. Actin filaments appear
as a dense cross-linked meshwork around the bacterium (A). Actin
filaments form a branched network with rigid attachments and a fixed
70° angle between the filaments. The branched points have a globular
mass, which would contain the Arp2/3 complex (B). Bars, 500 nm (A)
and 100 nm (B).
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Our understanding of the mechanisms of actin-based move-
ment of pathogens, including Shigella, Listeria, and vaccinia
virus, has recently dramatically progressed (4, 7, 8, 17, 100).
Clearly, although each pathogen exploits its own unique pro-
tein to modulate the host actin dynamics to promote the in-
fection process, they all share mechanisms of inducing actin
polymerization that are similar to each other or to those of
host systems, as typically exemplified by the status of N-WASP
or the Arp2/3 complex in mammalian cells (Fig. 4). Thus, our
goal in the study of the actin-based motility of pathogens is not
only to gain further insight into the understanding of precise
mechanisms of infection but also to provide an ideal model
system to uncover the complicated cellular systems for remod-
eling actin cytoskeletons in various cellular events.
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