Helicobacter pylori Induces RANTES through Activation of NF-κB

Naoki Mori,1* Alan M. Krensky,2 Romas Geleziunas,3 Akihiro Wada,4 Toshiya Hirayama,4 Chihiro Sasakawa,5 and Naoki Yamamoto6

Department of Virology, Faculty of Medicine, University of the Ryukyus, Okinawa,1 Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki,4 and Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo,5 and Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Stanford University School of Medicine, Stanford, California;7 and Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania8

Received 26 November 2002/Returned for modification 23 January 2003/Accepted 31 March 2003

Helicobacter pylori-infected gastric mucosa displays a conspicuous infiltration of mononuclear cells and neutrophils. RANTES (short for “regulated upon activation, normal T cell expressed and secreted”) is a chemoattractant cytokine (chemokine) important in the infiltration of T lymphocytes and monocytes. RANTES may therefore contribute to the cellular infiltrate in the **H. pylori**-infected gastric mucosa. The aim of this study was to analyze the molecular mechanism responsible for **H. pylori**-mediated RANTES expression. We observed that gastric epithelial cells produced RANTES upon coculture with **H. pylori**. In addition, **H. pylori** induced RANTES mRNA expression and an increase in luciferase activity in cells which were transfected with a luciferase reporter construct derived from the RANTES promoter, in gastric epithelial cells, indicating that the induction of RANTES production occurred at the transcriptional level. Induction of RANTES was dependent on an intact cag pathogenicity island. Activation of the RANTES promoter by **H. pylori** occurred through the action of NF-κB. Transfection of kinase-deficient mutants of IκB kinase (IKK) and NF-κB–inducing kinase (NIK) inhibited **H. pylori**-mediated RANTES activation. In contrast, tumor necrosis factor alpha- or interleukin-1/Toll-like receptor signaling molecules—such as mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1, MyD88, and interleukin-1 receptor-associated kinase—did not play a role in RANTES activation by **H. pylori**. Collectively, **H. pylori** induced NF-κB activation through an intracellular signaling pathway that involved IKK and NIK, leading to RANTES gene transcription. RANTES induction by **H. pylori** may play an important role in gastric inflammation.

The microaerophilic bacterium **Helicobacter pylori** plays an important role in the pathogenesis of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma (14, 17, 32, 33, 36). **H. pylori**-infected gastric mucosa from patients with active chronic inflammation is characterized by infiltration of various inflammatory cells, including polymorphonuclear leukocytes, lymphocytes, and cells of a macrophage lineage (13). The epithelial cytokine/chemokine response is particularly important in the early stages of **H. pylori**-induced inflammation. The functions of chemokines include attracting blood leukocytes to sites of inflammation (4, 41), regulating leukocyte maturation, trafficking and homing, and the development of lymphoid tissues (3, 29). Although most infected individuals develop only superficial gastritis, some patients progress to chronic gastritis, duodenal ulceration, or, rarely, cancer. This variability in clinical manifestation may arise because of differences in virulence of individual **H. pylori** strains. Several virulence factors have been described and include the presence of a vacuolating cytotoxin, vacA, and a cytotoxin-associated antigen A, cagA (9, 38). Individuals infected with cagA-positive **H. pylori** strains display more severe gastric inflammation and gastrroduodenal ulcer disease and appear to develop gastric adenocarcinomas more frequently (5, 10). Both in vitro and in vivo, cagA-positive strains elicit a significantly higher interleukin-8 (IL-8) response than cagA-lacking strains (11, 37). However, numerous studies have indicated that not cagA itself, but products of other genes in the cag pathogenicity island (cag PAI), about a 40-kb region of possibly extraneous origin, are responsible for IL-8 induction (7, 21, 47).

Although many studies have supported the causative role of IL-8 for the prominent neutrophil accumulation in **H. pylori**-infected gastric mucosa, which results in multifocal mucosal damage and atrophy, little is known about the mediators responsible for the infiltration of inflammatory cells other than polymorphonuclear leukocytes in this disease. RANTES (short for “regulated upon activation, normal T cell expressed and secreted”) is a member of the large and growing family of immunoregulatory cytokines called chemokines. RANTES belongs to the C-C chemokine subfamily. It is a potent chemotactic agent for T lymphocytes and monocytes (40) and is expressed after cellular activation in fibroblasts, T cells, monocytes, endothelial cells, and certain epithelial cells. RANTES may therefore contribute to the infiltration of lymphocytes in the **H. pylori**-infected gastric mucosa. Like that of IL-8, RANTES expression is increased in vitro and in vivo in gastric mucosa following **H. pylori** infection (8, 42, 50). Persistent expression and secretion of RANTES are closely related to residual infiltration of memory T lymphocytes for a prolonged period after **H. pylori** eradication (19).

The present study was designed to evaluate the effect of **H. pylori** eradication (19).

* Corresponding author. Mailing address: Department of Virology, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan. Phone: 81-98-895-1130. Fax: 81-98-895-1410. E-mail: n-mori@med.u-ryukyu.ac.jp.

Copyright © 2003, American Society for Microbiology. All Rights Reserved.
p. pylori on the expression of RANTES in gastric epithelial cells in vitro and to study the role of H. pylori virulence factors in any such effect. We found that H. pylori induces RANTES production and activates RANTES gene expression in gastric epithelial cells. We also showed that two NF-kB elements are essential for H. pylori–induced activation of RANTES gene expression. This related to the expression of cag PAI responsible for cytokine/chemokine production. Finally, we observed that RANTES gene activation was inhibited by transfection of a kinase-deficient mutant of NF-kB-inducing kinase (NIK) or IkB kinases (IKKs). In conclusion, H. pylori-induced RANTES activation in epithelial cells is dependent on cag PAI and involves NF-kB activation via the NIK-IKK signaling complex.

MATERIALS AND METHODS

Bacterial strains. H. pylori (ATCC 49503; American Type Culture Collection, Rockville, Md.) was used in most experiments described in this study. Other clinical isolates (OHPC0001, OHPC0002, and OHPC0003), isolated from patients with chronic gastritis, were kind gifts from T. Kitahora (Ohkura Hospital, Tokyo, Japan). An isogenic H. pylori mutant lacking the cag PAI was also studied together with its parental wild-type strain (26695). The presence of cag PAI and vacA in these strains was determined by PCR using specific sets of primers (Fig. 1A and data not shown) (1, 48). H. pylori strains were recovered from frozen stocks by seeding them on a blood agar plate (Mueller-Hinton II agar with 7% horse blood) at 37°C for 3 days under microaerophilic conditions (10% O2-10% CO2) generated with Anaeropack Campylo (Mitsubishi Gas Chemicals Co., Tokyo, Japan). Bacteria harvested from the plates, using cotton swabs, were suspended in 200 ml of brain heart infusion broth containing 10% fetal calf serum and were then liquid cultured at 37°C for 2 days with vigorous shaking in a controlled microaerophilic environment. Bacteria were harvested from the broth culture by centrifugation and were resuspended at the indicated concentrations in antibiotic-free medium. Cultured bacteria reached a density of 4 X 109 CFU/ml. All procedures were performed with the approval of the appropriate institutional biosafety review committees and in compliance with their guidelines for biohazards.

Cell culture. Human gastric epithelial cells, MKN45, were maintained in RPMI 1640 medium containing 10% fetal bovine serum (Atlanta Biologicals, Logan, Utah), penicillin G (100 U/ml), and streptomycin (100 μg/ml) (Osaka, Japan). On the day of the experiment, cells were refed with fresh serum and were then liquid cultured at 37°C for 3 days under microaerophilic conditions. Bacteria were harvested from the broth culture by centrifugation and were resuspended at the indicated concentrations in antibiotic-free medium. Cultured bacteria reached a density of 4 X 109 CFU/ml. All procedures were performed with the approval of the appropriate institutional biosafety review committees and in compliance with their guidelines for biohazards.

Reverse transcription (RT)-PCR. Total cellular RNA was extracted by Trizol (Life Technologies, Gaithersburg, Md.) according to the protocol provided by the manufacturer, and the amount of total RNA was determined by measuring the absorbance at 260 nm. First-strand cDNA was synthesized from 1 μg of total cellular RNA in a 20-μl reaction volume using an RNA PCR kit (Takara Shuzo, Kyoto, Japan) with random primers. Thereafter, cDNA was amplified for 30 and 28 cycles for RANTES and β-actin, respectively. The oligonucleotide primers used were as follows: for RANTES, sense, 5′-CCCGTCCCCACATCAAGGATTTG-3′, and antisense, 5′-CCAGCCTGGGGGAAGGTGTGGTAA-3′ (2); and for β-actin, sense, 5′-GGGGCGCCCGACCAAGCACA-3′, and antisense, 5′-CTCTTTAATGTCACGCACGATTTC-3′. Product sizes were 311 bp for RANTES and 548 bp for β-actin. Cycling conditions were as follows: denaturing at 94°C for 45 s (for RANTES) or for 30 s (for β-actin), annealing at 57°C for 90 s (for RANTES) or 60°C for 30 s (for β-actin), and extension at 72°C for 90 s. The PCR products were fractionated on 2% agarose gels and visualized by ethidium bromide staining.

Plasmids. The dominant negative mutants of IxBα, IxBαΔN, and IxBβ, IxBβΔN (kindly provided by D. W. Ballard, Vanderbilt University School of Medicine, Nashville, Tenn.) are deletion mutants of IxBα and IxBβ lacking the NH2-terminal 36 amino acids and 23 amino acids, respectively (6, 24). The dominant negative mutants of IxB kinase α (IκKα), IκKα (KK429), and of IκKβ, IκKβ (K44A), and the dominant negative mutant of NIK, NIK (KK429/430AA), have been described previously (15). IκKα (KK44M) and IκKβ (K44A) contain methionine and alanine replacements at lysine 442 and 430, respectively. NIK (KK429/430AA) contains alanine replacements at lysines 429 and 430. The dominant negative mutant of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK1), MEK1 (D1369A), was generously donated by M. H. Cobb (University of Texas Southwestern Medical Center, Dallas, Tex.). This plasmid contains an alanine replacement at aspartate 1369. The dominant negative mutants of IL-1 receptor-associated kinase (IRAK) and MyD88 were generously donated by M. Muzio (Mario Negri Institute, Milan, Italy). The former is a truncated version encoding amino acids 1 to 215, and the latter is a COOH-terminal region of MyD88 (152 to 296). A series of RANTES promoter pGL2-luciferase reporter constructs described previously (31, 35) was used to map H. pylori-responsive regions.

Transfection and luciferase assay. MKN45 cells (7 X 104) were transfected with 0.1 μg of appropriate reporter and effector plasmids along with 0.6 μg of pRL-TK, an internal control Renilla luciferase expression vector (Promega, Madison, Wis.), using Lipofectamine (Life Technologies). After 24 h, H. pylori was added to a final dose of 50 organisms/cell and incubated for 6 h, since higher concentrations of bacteria induced the death of MKN45 cells as determined by a morphological analysis. The cells were washed in phosphate-buffered saline
and lysed in reporter lysis buffer (Promega). Lysates were assayed for reporter gene activity with the dual luciferase reporter assay system (Promega). In some experiments, MKN45 cells were treated with 20 μM Bay 11-7082 (Calbiochem, La Jolla, Calif.), which inhibits NF-κB activation (39). After 1 h of Bay 11-7082 exposure, the cells were then cocultured with H. pylori for 6 h.

Nuclear extracts preparation and EMSA. NF-κB binding activity to κB elements was examined by electrophoretic mobility shift assay (EMSA), as described previously (25). In brief, 5 μg of nuclear extracts was preincubated in a binding buffer containing 1 μg of poly(dI-dC) (Pharmacia, Piscataway, N.J.), followed by addition of α-32P-labeled oligonucleotide probes containing κB elements (approximately 50,000 cpm). These mixtures were incubated for 15 min at room temperature. The DNA protein complexes were separated on 4% polyacrylamide gel and visualized by autoradiography. To examine the specificity of the κB element probes, we preincubated unlabeled competitor oligonucleotides with nuclear extracts for 15 min before incubation with probes. The probes or competitors used were prepared by annealing the sense and antisense synthetic oligonucleotides as follows: A site NF-κB of the RANTES gene, 5′-tgaATGTTCGGGAACTCCCTTACGG-3′; B site NF-κB of the RANTES gene, 5′-tgaCTTACGGGATGCCCTCAACTG-3′; and a consensus AP-1 binding site, 5′-gatcGCCCTTAGTACGATCCGGGAA-3′. Underlined sequences represent the NF-κB or AP-1 binding sites, and lowercase letters represent residues added for labeling purposes. To identify NF-κB proteins in the DNA protein complex revealed by EMSA, we used antibodies specific for various NF-κB family proteins, including p65, p50, c-Rel, and p52 (Santa Cruz Biotechnology, Santa Cruz, Calif.), to elicit a supershift DNA protein complex formation. These antibodies were incubated with the nuclear extracts for 45 min at room temperature before incubation with radiolabeled probes.

RESULTS

H. pylori infection increases RANTES production and steady-state RANTES mRNA levels in gastric epithelial cells. We first examined the capacity of gastric epithelial cells to produce RANTES upon coculture with live *H. pylori*. A gastric epithelial cell line, MKN45, did not produce RANTES (Fig. 1B). Coculture with live *H. pylori* (ATCC 49503) induced significantly RANTES production by MKN45 (Fig. 1B). Using RT-PCR, we next examined whether coculture of MKN45 with *H. pylori* leads to the induction of RANTES mRNA. Coculture with *H. pylori* (ATCC 49503) significantly enhanced steady-state levels of RANTES mRNA in MKN45 cells (Fig. 2A). RANTES transcript levels clearly increased 1 h after addition of *H. pylori* to the MKN45 cells and remained elevated at least 24 h following cocultivation (Fig. 2A). Supernatants derived from *H. pylori* (ATCC 49503) cultures failed to induce RANTES mRNA expression in MKN45 cells (Fig. 2B). Moreover, neither heat-killed bacteria nor live bacteria separated by a permeable membrane induced RANTES mRNA expression in MKN45 cells (data not shown). These results suggest that interaction with live *H. pylori* itself, rather than products secreted by these bacteria, up-regulates the steady-state levels of RANTES mRNA.

H. pylori strains differ in their ability to induce RANTES production and RANTES mRNA expression. Since numerous studies indicated that expression of multiple genes in the cag PAI is necessary for cytokine production by gastric epithelial cells in vitro (7, 21, 47), we examined the ability of several *H. pylori* strains, possessing or lacking the cag PAI, to induce RANTES production and RANTES mRNA expression. Infection with *H. pylori* strains ATCC 49503, OHPC0001, and OHPC0003 led to increased RANTES production (Fig. 1B) and RANTES mRNA levels (Fig. 2B) in MKN45 cells. Strain OHPC0002 failed to induce RANTES production (Fig. 1B).
and RANTES mRNA levels (Fig. 2B). OHPC0002 lacks the cagA gene in cag PAI (Fig. 1A). Previously, we amplified six fragments by long-distance PCR for linkage throughout cag PAI, and confirmed that ATCC 49503, OHPC0001, and OHPC0003 had the entire cag PAI, whereas OHPC0002 totally lacked the cag PAI (48). To determine whether the observed difference in RANTES mRNA expression was specific to the cag PAI, we next examined a wild-type cag PAI-positive H. pylori strain (26695) and an isogenic cag PAI mutant. As expected, stimulation with the wild-type strain 26695 induced RANTES mRNA expression in MKN45 cells (Fig. 2C). The isogenic mutant that lacked expression of cag PAI did not induce RANTES mRNA expression (Fig. 2C). The ability of H. pylori to induce RANTES production and RANTES mRNA expression was independent of the vacA locus, as all bacterial isolates possessed this gene (Fig. 1A). Furthermore, strain OHPC0001 induced RANTES production and RANTES mRNA expression despite the absence of vacuolating cytotoxin (data not shown). These results suggest that the H. pylori cag PAI plays an important role in the induction of RANTES production and RANTES mRNA expression.

H. pylori regulates RANTES gene transcription. Actually, RANTES expression is regulated both translationally and transcriptionally (43, 45). In the next series of experiments, we investigated whether H. pylori-mediated up-regulation of RANTES gene expression could directly enhance the activity of its promoter. MKN45 cells were transiently transfected with a reporter gene construct containing the 195 nucleotides of the RANTES upstream regulatory sequences. The activity of this RANTES-driven reporter construct was significantly increased after the addition of H. pylori (ATCC 49503) when the ratio of bacteria to epithelial cells was 5:1 (Fig. 3B). The highest RANTES promoter activity was observed after infection when the ratio of bacteria to cells was 50:1. No further increase in RANTES promoter activity was evident with a higher infecting dose of bacteria (500 organisms/cell), which induced the death of MKN45 cells. The RANTES promoter has been subdivided into five regions (A through E) based upon deletion studies and reporter gene assays (Fig. 3A) (30, 31, 35). The A site is very important for the promoter activity since point mutations decrease the activity by 90% (27, 30). The A site contains NF-κB-like characteristics (GGAAACTCC), especially when analyzed on the opposite DNA strand (GGGAGTTCC), and binds both NF-κB family proteins and RANTES factor of late-activated T lymphocytes-1 (also named Krüppel-like factor [43]) (30, 44). The B site also contains a consensus for a nearly palindromic NF-κB-like binding site (GGGGATGCCC) (30). The C site and E site bind nuclear proteins that are strongly induced between days 3 and 5 after activation of normal peripheral blood T cells (35). To test the relative contributions of these five regions to H. pylori-mediated activation of RANTES, plasmids with deletions in these regions of the RANTES promoter were transfected (Fig. 3C). Co-culture of H. pylori caused a 4.6-fold rise in the activity of the pGL2-R-luciferase construct. Deletion of either the A site, the B site, or both sites abolished H. pylori-mediated activation of this reporter construct. When the C or E site was deleted, H. pylori-mediated induction was not significantly impaired, indicating that these sites mainly do not affect H. pylori mediated RANTES induction in epithelial cells. Thus, only the A and B sites, but not the E and C sites, represented major H. pylori-responsive elements within the RANTES transcriptional regulatory sequences. This was confirmed with a reporter gene construct containing only three A and B sites. H. pylori infection significantly induced RANTES gene expression when the pGL2-SV40-(AB)3-luciferase construct was used for the transfection.

H. pylori infection of gastric epithelial cells induces binding of NF-κB family proteins to the NF-κB elements of the RANTES promoter. Because the deletional analyses of the RANTES promoter indicated that H. pylori infection activated transcription through the A and B sites, it was important to identify the nuclear factors that bind to these sites. The NF-κB-like regions within A and B sites derived from the RANTES promoter were used as probes in the EMSA. MKN45 cells were infected with H. pylori (ATCC 49503), and at different time points after challenge, nuclear protein extracts were prepared and analyzed for NF-κB DNA binding activity. As shown in Fig. 4A, a complex formed with the A and B oligonucleotide probes was induced in MKN45 cells within 60 min after infection with H. pylori. This complex was specific to the A or B fragment because it was reduced by the addition of excess A or B oligonucleotide (Fig. 4C, lanes 2 and 9), but not by an unrelated oligonucleotide containing a consensus AP-1 sequence (Fig. 4C, lanes 3 and 10). Next, we characterized the H. pylori-induced complexes identified by the RANTES A and B probes. These complexes most likely contain members of the NF-κB family. To identify which NF-κB family members were binding to the A and B sites in the RANTES promoter, we performed the EMSA using antibodies specific for members of the NF-κB family. Preincubation with anti-c-Rel or anti-p52 antibody did not affect these complexes (Fig. 4C, lanes 6, 7, 13, and 14), but these complexes were supershifted by the addition of anti-p50 or anti-p65 antibody (Fig. 4C, lanes 4, 5, 11, and 12). These results suggest that H. pylori-induced RANTES NF-κB binding activity is composed of p50 and p65. Therefore, H. pylori infection induces RANTES gene expression, at least in part through the induced binding of p50 and p65 to NF-κB sites within either the A or B site in the RANTES promoter region.

Since we have shown that the cag PAI-positive strains induce significantly more RANTES mRNA than do cag PAI-lacking H. pylori strains, we sought to determine whether cag PAI-positive H. pylori strains induce better NF-κB (Fig. 4B). Markedly increased NF-κB DNA binding activity on A and B probes was induced by cag PAI-positive H. pylori strains (lanes 2, 3, 5, 7, 8, and 10) compared with the cag PAI-lacking strain (lanes 4 and 9). These results indicate that the increased ability of cag PAI-positive strains to activate NF-κB binding may play a key role in the observed activation of the RANTES promoter by these bacterial strains. Thus, H. pylori infection induces RANTES gene expression, at least in part, through the induced binding of p50 and p65 NF-κB family members to the κB elements within A and B sites of the RANTES promoter, and this effect is dependent on cag PAI products.

H. pylori-induced activation of the RANTES promoter can be blocked by Bay 11-7082 or dominant interfering signaling components of the NF-κB pathway. We next examined whether H. pylori-mediated activation of RANTES gene expression involves signal transduction components in NF-κB
activation. The activation of NF-κB requires phosphorylation of two conserved serine residues of IκBα (Ser-32 and Ser-36) and IκBβ (Ser-19 and Ser-23) within their NH₂-terminal domain (16). Phosphorylation leads to ubiquitination and the 26S proteasome-mediated degradation of IκBαs, thereby releasing NF-κB from the complex to translocate to the nucleus and activate genes (16). Bay 11-7082 potently inhibits NF-κB activation through the inhibition of IκBα phosphorylation, thereby preventing NF-κB-mediated transcriptional activation (26, 39).

Bay 11-7082 induces apoptosis in cells with constitutive activity of the NF-κB pathway, but not in normal peripheral blood mononuclear cells (26). We used Bay 11-7082 to show a link between NF-κB activation and up-regulation of RANTES promoter activity in H. pylori-infected MKN45 cells. We transfected a pGL2-R-luciferase construct and observed the influence of Bay 11-7082. Bay 11-7082 significantly inhibited RANTES transcription (Fig. 5A). We examined the cytotoxic effects of Bay 11-7082 on MKN45 cells by means of the trypan
blue dye exclusion test. Importantly, Bay 11-7082 did not affect the survival of MKN45 cells (data not shown).

A high-molecular-weight complex, IKK complex, which is composed of two catalytic subunits, IKKα and IKKβ, and a regulatory subunit, IKKγ, phosphorylates IκBα and IκBβ (18). Recent studies indicated that members of the mitogen-activated protein kinase kinase family mediate physiologic activation of IKK (51). These kinases include NIK (49) and MEKK1 (20). Dominant interfering mutants of IκBα and IκBβ and kinase-deficient mutants of IKKα, IKKβ, NIK, and MEKK1 were tested for their ability to inhibit H. pylori-mediated activation of the RANTES-driven reporter gene. Expression of these various inhibitory mutants except for the dominant negative mutant of MEKK1, abolished the induction of the RANTES promoter by H. pylori infection (Fig. 5B). The signaling pathways leading from tumor necrosis factor (TNF)-α and IL-1 receptor activation to NF-κB have been best characterized. The recently described human Toll-like receptors (TLRs) are members of the IL-1 receptor family of proteins, and signaling from these receptors appears to be identical with IL-1 signaling (28). Although the upstream components of activation are distinct, signaling to NF-κB by TNF-α and Toll/IL-1 involves activation of NIK and the IKK complex. Like TNF-α and Toll/IL-1 signaling to NF-κB, activation of NF-κB by H. pylori requires IKKs and NIK (23). Similar to H. pylori, TNF-α and IL-1β were capable of inducing RANTES expression in MKN45 cells (data not shown). However, the H. pylori-induced signaling pathway upstream of NIK may be potentially distinct. By using transient transfection to overexpress dominant negative versions of MyD88 and IRAK in MKN45 cells, we examined whether H. pylori infection could activate a RANTES-dependent reporter (Fig. 5B). RANTES activation by H. pylori did not require IL-1/TLR-specific signaling molecules. These data demonstrate that signaling components, NIK and IKK, involved in the activation of NF-κB are necessary for H. pylori activation of the RANTES promoter, but IL-1/TLR-specific signaling molecules, such as MyD88 and IRAK, do not play a role.

DISCUSSION

Previous studies reported that the expression of RANTES is enhanced in H. pylori-infected gastric mucosa at the mRNA level (42, 50). The significant correlation between the mucosal RANTES levels and the number of memory T lymphocytes suggests that RANTES leads to the infiltration and accumulation of memory T lymphocytes in H. pylori-infected gastric mucosa (19). In the present study, we examined the hypothesis that H. pylori infection of gastric epithelial cells modulates host cell RANTES expression levels. Coculture with H. pylori sig-
RANTES. In agreement with these findings, Debreceni et al. (12) showed that Helicobacter felis induced RANTES mRNA expression in the normal gastric surface mucous epithelial cell line.

RANTES is expressed relatively late after activation of peripheral blood T cells by antigen or mitogens but is rapidly induced in normal fibroblasts and epithelial cells by TNF-α and IL-1β, suggesting that different control mechanisms may regulate RANTES transcriptional activation (31). Among the multiple regulatory domains identified in the RANTES upstream promoter are two binding sites for the NF-κB transcription factors, located −78 to −42 bp upstream from the transcription initiation site (27, 30). Induction of NF-κB plays an important role in RANTES gene activation by stimuli such as phorbol myristate acetate-ionomycin, proinflammatory cytokines, or anti-CD3 and anti-CD28 antibodies (27); furthermore, an NF-AT-like motif and a CD28RE-like motif also serve as NF-κB binding sites (27). Interferon regulatory factor 3 also plays a role in the regulation of RANTES gene expression (22). The H. pylori-responsive elements within the 5′ regulatory sequences of the RANTES gene were localized in A and B sites. Deletion of the NF-κB sites in this region resulted in loss of H. pylori responsiveness, indicating that RANTES regulation by H. pylori is mediated by NF-κB sites. Furthermore, blocking NF-κB activation by Bay 11-7082 markedly inhibited RANTES promoter activity after H. pylori infection. These findings suggest that NF-κB activation may be a necessary prerequisite for increased epithelial cell RANTES activation in response to bacterial infection by H. pylori. Because neither supernatants of H. pylori cultures nor H. pylori separated by a permeable membrane induce RANTES expression, components of the H. pylori bacterium most likely act to trigger the induction of RANTES in gastric cells. A cag PAI-negative clinical isolate of H. pylori is incapable of inducing RANTES expression. Furthermore, we found that the cag PAI-lacking mutant also shows a lack of potency in RANTES induction compared with its cag PAI-positive parental strain. These findings indicate that the gene products of the cag PAI are involved in the induction of RANTES gene expression. Recent studies showed that H. pylori type IV secretion system proteins promote migration of CagA protein into gastric epithelial cells, where it is tyrosine phosphorylated and subsequently modulates phosphorylation of host proteins (34). Whether the type IV secretion system of H. pylori is also responsible for production of RANTES remains to be determined. In this study, we analyzed the capacities of different H. pylori strains to induce RANTES and identified the signaling components NIK and IKKs as likely participants in H. pylori-mediated NF-κB activation. Compared with the cag PAI-negative H. pylori strain, the more virulent cag PAI-positive strains showed an enhanced ability to induce RANTES promoter activity (data not shown) and NF-κB binding activity. This was consistent with our observations that increased RANTES induction in MKN45 cells was associated with cag PAI-positive strains. These results demonstrate that the ability of cag PAI-positive H. pylori strains to activate RANTES expression is dependent on prior activation of NF-κB p50 and p65 subunits.

The mammalian signaling pathways triggered by H. pylori remain largely unknown. In this study, we identified the cellular kinases NIK and IKKs as participants in NF-κB-dependent signaling.
RANTES induction by *H. pylori* in gastric epithelial cells. In agreement with this, Maeda et al. (23) showed that *H. pylori* induced NF-κB activation through an intracellular signaling pathway that involves IKKs and NIK. In gram-negative bacteria, lipopolysaccharide is reported to be the most potent inflammatory factor. NF-κB activation induced by lipopolysaccharide involves CD14/TLR4 through IL-1 receptor signaling molecules, namely, MyD88, IRAK, and TNF receptor-associated factor 6 (46, 52). Because *H. pylori* is a gram-negative bacterium, we investigated whether *H. pylori*-mediated RANTES activation involves CD14/TLR4 in the signaling pathway. TLR4 was expressed in MKN45 cells (data not shown). However, *H. pylori*-induced RANTES activation was not inhibited by dominant negative mutants of MyD88 and IRAK. These findings suggest that a signal transduction molecule in the *H. pylori*-mediated RANTES activation involves activation of NIK and the IKK complex but does not belong to the IL-1/TLR superfamily.

In the present study, we showed for the first time the mechanism of *H. pylori*-mediated RANTES activation. NF-κB-mediated RANTES activation is caused through a mechanism independent of IL-1/TLR-specific signaling molecules. We have also shown that pretreatment of cells with Bay 11-7082, which inhibits NF-κB activation, inhibited *H. pylori*-induced RANTES activation. The inflammatory response to *H. pylori* infection is a complicated product of cytokine/chemokine networks mainly regulated by NF-κB. Inhibition of NF-κB may reduce some inflammatory responses caused by *H. pylori* and the associated risk of gastric cancer development.

ACKNOWLEDGMENTS

We thank T. Kitahora for providing clinical isolates of *H. pylori*, D. W. Ballard for providing the dominant negative mutants of *IκBα*, *IκBβ*, and *IκBβN*, M. H. Cobb for providing the dominant negative mutant of MEEKK1, MEEKK1 (D1369A), and M. Mizujo for providing the dominant negative mutants of MyD88 and IRAK.

REFERENCES

RETRACTION

Helicobacter pylori Induces RANTES through Activation of NF-κB

Naoki Mori, Alan M. Krensky, Romas Geleziunas, Akihiro Wada, Toshiya Hirayama, Chihiro Sasakawa, and Naoki Yamamoto

Department of Virology, Faculty of Medicine, University of the Ryukyus, Okinawa, Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, and Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, and Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania