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FIG 2 In vitro neutralization assay on IMR-90 human fibroblasts. Images show the morphology of control cells (A) and cells incubated with 1 CTU,, of TcdA
(C) or TcdB (D). (E and F) Cell rounding was inhibited by serum against TcdA-B1+TcdB-GT. (E) TcdA (1 CTU, ) plus 1/8,000-diluted serum; (F) TcdB
(1 CTU ) plus 1/256-diluted serum. The negative control was the corresponding preimmune serum in the presence of 1 CTU,, of TcdA (B) or TcdB (not
shown). The complete panel of images showing the titration of neutralizing activities is reported in Fig. S4 in the supplemental material.

ciated with the intestinal tissue (data not shown). The gut epithelia
appeared to revert to normality, with an absence of polymorph
influx (Fig. 5D). Interestingly, while no hyperplasia of the cecum
was evident, it persisted in the terminal colon (red arrows in
Fig. 5D).

Opverall, postvaccination analyses indicated that the presence
of antibodies neutralizing both toxins strongly limited gut epithe-
lial damage and mediated recovery from disease.

DISCUSSION

There is well-established evidence that protection against severe
CDI is mediated by systemic antibodies to TcdA and TcdB (10,
34). In this study, we evaluated the ability of recombinant toxin
fragments to induce robust immunity against lethal challenge
with C. difficile. The use of recombinant proteins is an attractive
strategy for vaccine design, as antigen fragments can be engi-
neered to meet all the quality standards required during large-
scale production, excluding issues of incomplete inactivation and
destruction of conformational epitopes associated with the use of
formaldehyde-detoxified toxoid.

Initial screening in vitro revealed that immunization of mice
with TcdB fragments induced relatively low neutralization titers.
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The limited activity of the anti-TcdB antibodies could be ex-
plained in part by the difference in cytotoxicity of TcdB, which has
been reported to be 1,000 times more potent in vitro than TcdA
(14). A second striking difference between the toxins was the lo-
calization of the protective epitopes. While the RBD domain of
TcdA was clearly predominant in inducing neutralizing antibod-
ies to this toxin, both TcdB-B3 and TcdB-GT induced antibodies
in mice that were comparably efficient at neutralizing TcdB. This
observation was subsequently confirmed in hamster experiments.
All animals immunized with the TcdA-B1+TcdB-GT and TcdA-
B1+TcdB-B3 combinations survived challenge with C. difficile
strain 630. Unlike the control animals, hamsters immunized with
TcdA-B1+TcdB-B3 were protected from death, although most
suffered a single episode of self-limiting diarrhea. In contrast, an-
imals immunized with TcdA-B1+TcdB-GT and challenged with
strain 630 did not develop diarrhea, suggesting that this combina-
tion provided enhanced protection. The hypothesis was con-
firmed by the observation that only vaccination with TcdA-
B1+TcdB-GT fully protected all animals after challenge with the
B1 strain, with the vaccine remaining fully protective even when
the formulation was reduced to 20 pg/dose. Remarkably, the ad-
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TABLE 2 Protection against C. difficile disease in hamsters vaccinated with recombinant TcdA and TcdB fragments with MF59 adjuvant”

% Survival (no. of
survivors/total no.

Anti-TcdA neutralization

Anti-TcdB

Challenge strain and vaccine antigen(s) of animals) Duration of diarrhea titer neutralization titer

Strain 630
TcdA-B1+TcdB-B3 100 (6/6) 5h 55 min * 3 h 25 min 4,667 = 1,764 558 += 121
TcdA-B1+TcdB-GT 100 (6/6) None 8,000 = 0 512+ 0
Tcd-B1/TcdB-GT chimera 60 (3/5) 16 h 57 min * 7 h 39 min 1,667 = 333 (32 £ 0) 512 =0 (16 = 0)
Adjuvant alone 0(0/7) 4h 5 min = 0 h 44 min°®
Naive animals 0(0/7) 3h 37 min = 0 h 33 min®

Strain B1
TcdA-B1 0 (0/6) ND¢ ND ND
TcdB-B3 0 (0/6) ND¢ 0 426 + 85
TcdA-B1+TcdB-B3 83 (5/6) 24 h 46 min = 7 h 43 min 2,000 £ 0 (32 £ 0) 512 =0 (16 = 0)
TcdA-B1+TcdB-GT 100 (6/6) 7 h 53 min * 2 h 34 min 1,200 = 5,060 341 + 85
TcdA-B2+TcdB-GT 100 (6/6) 12h 19 min * 3 h 4 min 8,000 = 0 256 = 0
TcdA-B1+TcdB-B3+TcdB-GT 83 (5/6) 8 h 8 min * 4 h 59 min 1,000 = 0 (32 = 0) 2,000 =0 (32 = 0)
TcdA-B2+TcdA-GT+TcdB-B3+TcdB-GT 83 (5/6) 6h 1 min = 1h 28 min 6,667 * 1,333 (512 = 0) 512 =0 (0)
Adjuvant alone 0 (0/10) 3h2min * 0 h 22 min®
Naive animals 0 (0/10) 2h 34 min = 0h 17 min®

Strain B1 with reduced antigen dose (20

wg/dose)

TcdA-B1+TcdB-GT 100 (8/8) 7h 25 min *+ 2 h 6 min 10,000 *= 1,852 112 £ 10
TcdA-B2+TcdB-GT 37 (3/8) 9h 39 min * 4 h 44 min 2,133 + 5,333 (8,000 = 0) 128 = 0 (0)
TcdA-B2+TcdA-GT+TcdB-B3+TcdB-GT? 86 (6/7) 15h 15 min = 2 h 3 min 8,000 = 0 (512 = 0) 256 = 0 (0)

“ Neutralization titers were determined with pooled sera from protected animals at the experimental endpoint. Values represent geometric means for 3 to 5 independent
experiments * SE. Titers in parentheses refer to single or pooled sera from unprotected animals. ND, not determined.
b Sample sera from vaccinated animals were collected before the challenge and showed neutralization titers comparable to those measured at the experimental endpoint (data not

shown).
¢ Diarrhea was observed until the body temperature dropped below 35°C.

48 hrs 14 days control

1 2 383 4 5 6 7 8 9 10

FIG 3 IgG antibodies against toxin A (A) and toxin B (B) in cecum samples
from hamsters vaccinated with TcdA-B1+TcdB-GT. Twofold dilutions of
TcdA and TcdB (100 ng to 3 ng) were serially spotted onto a nitrocellulose
membrane. Dot blots were then performed with filtered cecum samples taken
from vaccinated animals in the acute phase of infection (48 h postchallenge)
(hamsters 1 and 2) and at the experimental endpoint (14 days postchallenge)
(hamsters 3 to 8). Control animals were treated with adjuvant only and in-
fected under the same experimental conditions (hamsters 9 and 10).
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dition of other components to the TcdA-B1+TcdB-GT combina-
tion had a detrimental effect on animal survival. This was
particularly evident for formulations with lower antigen concen-
trations, where the addition of TcdA-GT and TcdB-B3 was unable
to eliminate clinical signs or enhance the neutralization titers of
immune sera. TcdA-B1+TcdB-GT was therefore the minimal
combination necessary and sufficient to ensure the survival of all
vaccinated hamsters and induce neutralizing antibody titers able
to prevent the onset of disease. This evidence opens new perspec-
tives on the use of recombinant antigens to vaccinate against CDI.
It is widely accepted that C. difficile vaccines should be based on
the generation of antibodies interfering with the initial binding
and internalization of TcdA and TcdB within the host cells. For
this reason, an immune response toward protective epitopes of
both toxins is of fundamental importance.

Historically, the first evidence that antitoxin immunity can
protect hamsters against lethal challenge was obtained by immu-
nizing animals with formalin-inactivated toxoid from culture fil-
trates (57-59). Significantly, Torres and colleagues compared the
effectiveness of toxoid preparations at different antigen doses and
immunization routes (60). They showed that a combination of
mucosal and systemic immunization induced protection against
both the diarrheal symptoms of infection and lethality in ham-
sters. The combined use of mucosal and parenteral administration
of both toxoids was further investigated by Giannasca et al., who
used more-purified toxoid preparations and replaced the i.p.
route with the clinically acceptable intramuscular injection route
(61). Full protection was achieved only in animals vaccinated with
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FIG 4 Toxin A and B levels in hamsters vaccinated with the TcdA-B1+TcdB-GT combination. Values indicate the fold dilutions required to eliminate cell
rounding. Filtered cecum samples were taken from vaccinated animals in the acute phase of infection (M; 48 h postchallenge) and at the experimental endpoint
(A; 14 days postchallenge). Toxin levels in the cecum samples of animals at day 14 were significantly lower (#*, P = 0.0014 for toxin A and P = 0.0015 for toxin
B) than those measured in control animals (acute disease) or vaccinated animals at 48 h. Control animals (@) were treated with adjuvant only and infected under
the same experimental conditions. Toxin levels were evaluated at the acute end stage of the infection.

a combination of rectal immunization with E. coli heat-labile
toxin adjuvant and intramuscular injection of alum-adjuvanted
toxoids. The absence of antitoxin antibodies in feces suggested
that circulating antibodies were responsible for protection of vac-
cinated hamsters. Subsequent studies investigated the efficacy of
several recombinant toxin fragments by systemic vaccination.
Vaccine candidates included the entire RBD from TcdA (62),
smaller TcdA internal fragments (35), and, more recently, chime-
ric proteins that incorporate regions from both toxins into a single
polypeptide chain (46, 47). Such fusion proteins have been tested
with alumimun hydroxide at doses ranging from 10 pg (47) up to
100 pg (46). Full protection from death has been observed only at

Upper Lower colon
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colon

FIG 5 Histopathology of hamster gut tissues following immunization with
TcdA-B1+TcdB-GT and challenge with C. difficile B1. Samples were taken
from control hamsters (A), unvaccinated hamsters during the acute phase of
infection (B), and vaccinated hamsters at 48 h (C) and 14 days (D) postchal-
lenge. Arrows indicate an influx of PMNs (black), hyperplasia (red), and epi-
thelial disruption (green). Histopathological scores are reported in Fig. S5 in
the supplemental material.
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higher antigen doses after challenge with the less virulent strain
630.

Overall, the TcdA-B1+TcdB-GT combination reported in the
present study appears to be a promising vaccine candidate, as four
doses of 20 g were able to protect hamsters against severe infec-
tion with strain B1. Whether a vaccine containing such a combi-
nation could potentially be optimized by reducing the total num-
ber of injections is an aspect that requires further investigation.

Our results clearly indicate that the protective epitopes of TcdB
are not exclusively localized in the RBD and emphasize the impor-
tance of carrying out an initial screening to identify the most
promising vaccine candidates. These findings align with previous
studies showing that TcdB neutralizing epitopes are located
within the N-terminal GT domain (47). The importance of the
TcdB-GT domain was also revealed by epitope mapping of hu-
manized monoclonal antibodies for passive immunotherapy (32).

The absence of a clear correlation between immunogenicity
and protective efficacy suggests a biased immune response toward
immune-dominant nonneutralizing epitopes. From a vaccine
perspective, the dissection of the toxin polypeptides into recom-
binant fragments provides the double advantage of reducing an-
tigen size and enhancing the population of neutralizing antibod-
ies.

Our analysis in vivo revealed that antibody-mediated toxin
neutralization is effective at the level of the epithelial barrier. In-
deed, toxin levels in the gut lumens of vaccinated animals recov-
ering from diarrhea 48 h after challenge and those found in con-
trol animals were equivalent. Therefore, the reduction in diarrheal
episodes observed in protected animals could be associated with
early toxin production, which causes limited damage to the vas-
culature. The resulting lesion allows permeation of the immune
serum containing neutralizing antibodies. The protective effect of
such infiltration was appreciable from inspection of gut tissues of
vaccinated animals, as initial damage and neutrophil infiltration
were limited and were followed by tissue repair.

It remains to be determined whether the higher protection
induced in hamsters by combinations containing TcdB-GT is due
to the ability of specific antibodies to limit cell binding and uptake
of TcdB or whether the direct neutralization of the enzymatic
domain is able to protect against the effects of still-uncharacter-
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ized extracellular enzymatic activity of the toxin. Whichever is the
case, TcdA-B1+TcdB-GT appears to generate significant protec-
tion, providing new hope for reducing the impact of CDI.
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