
















of PTSs and carbohydrate metabolism genes as the IAV-dispersed
cells and showed a similar, although not as pronounced, increased
production of ATP and lactate. Compared to biofilm bacteria,
ATP-dispersed pneumococci had an initial rate of intracellular
ATP production that was 72-fold higher (19.3 mM per minute)
and a 149-fold-higher peak after 30 min (311 nM per 106 cells).
Similarly, the initial rate of lactate production was 18-fold higher,
and levels were 9-fold higher after 30 min.

Avirulent broth-grown bacteria showed ATP and lactate pro-
duction levels that were higher than in biofilm bacteria. Interest-
ingly, the ATP production of these bacteria was similar to that in
heat-dispersed pneumococci but lower than in ATP- or IAV-dis-
persed pneumococci, and the lactate production was higher than
in heat-dispersed bacteria and lower than in ATP- and IAV-dis-
persed bacteria. Although this supports the RNA-seq results for
glucose metabolism, which was the purpose of the experiment, it

FIG 3 Relative expression of representative genes in IAV-dispersed cells compared to broth-grown bacteria. The upper graph shows log2 fold changes in
expression of representative genes involved in colonization, including competence, fratricide (Frat), and transparent phenotype (Trans), amino acid biosynthesis
and transport, pyrimidine and purine metabolism, and translation, including both ribosomal proteins and other translational proteins. The middle graph shows
log2 fold changes in expression of genes involved in carbohydrate metabolism, including PTSs, ABC systems (ABC tp), and enzymes and regulators involved in
metabolism of various carbon sources. The lower graph shows log2 fold changes in expression of genes involved in bacteriocin function, including biosynthesis,
immunity, and transport (Tp), stress response proteins, including heat shock proteins (Hsp) and other stress response genes, and common virulence factors.
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also means that in vitro glucose metabolism is not the sole predic-
tor of virulence. This is not surprising, as metabolism is intricately
regulated and additional factors are likely to contribute to the
observed virulence differences in Fig. 1.

DISCUSSION

We used RNA-seq and a novel biofilm model of coinfection to
identify transcriptional changes during active dispersal of S. pneu-
moniae as it transitions from asymptomatic colonization in bio-
films into an invasive pathogen. We identified changes in several
gene categories, including those associated with metabolism, col-
onization, and disease. IAV had the largest impact on the pneu-
mococcal transcriptome, both in terms of the number of genes
differentially regulated and in the range of fold changes. These
data help explain the strong epidemiological link between respi-
ratory virus infection and pneumococcal disease and have impor-
tant implications for laboratory studies of pneumococcal patho-
genesis.

Moreover, these data challenge the thinking that regards
pathogenic organisms as organisms expressing a specific set of
virulence factors that are turned on or off when needed, and in-
stead our data emphasize multifactorial, adaptive changes to the
host environment as a way for these bacteria to survive and thrive
during the course of infection. Mutation of individual genes or
pathways will therefore be unlikely to produce complete answers
about the nature of virulence, especially since the organisms will
most certainly further change and adapt as disease progresses.
However, our results provide an initial global look at the complex-
ity of transcriptional changes associated with virulence and a start-
ing point to further elucidate the key mechanisms involved.

Virulent S. pneumoniae upregulated genes involved in up-
take and utilization of carbohydrates through glycolysis and
other pathways. S. pneumoniae relies solely on carbohydrates as a
carbon source (65). S. pneumoniae contains genes encoding at
least 20 carbohydrate transporters in the core genome (66) and
can ferment 
30 different carbohydrates (67). Genes regulating
carbohydrate metabolism, PTS, and ABC transporters have been
identified as important during tissue-specific disease (29, 68, 69).
Carbohydrate metabolism may provide selective advantages in
different host niches, as the carbon source availability in the na-
sopharynx will be drastically different from other body sites. As an
example, glpO was upregulated 60-fold and 509-fold in IAV-dis-
persed cells compared to biofilm and 37°C planktonic cells, re-
spectively. glpO encodes a surface-expressed �-glycerophosphate

oxidase involved in glycerol metabolism and was recently identi-
fied as a promising vaccine antigen in a screen for S. pneumoniae
genes expressed during meningitis (56). Glycerol is more abun-
dant than glucose in the brain, whereas glucose is more abundant
in the blood (70, 71). We were able to verify the RNA-seq expres-
sion data by measuring glucose metabolism of the various pneu-
mococcal populations in vitro. Biofilm bacteria were unable to
effectively metabolize glucose, whereas the dispersed populations
all metabolized glucose effectively and were closely associated with
expression of genes involved in glucose metabolism. While gen-
eral metabolic differences were observed following the addition of
glucose, there was not a direct correlation between glucose metab-
olism and virulence. This was not unexpected, given that the tran-
scriptional shift in response to environmental changes is complex
and virulence is multifaceted.

NanA and NanB are important for colonization, pneumonia,
and sepsis (72). S. pneumoniae is viable with sialic acid as its only
carbon source (73). Provision of sialic acid in a murine model of
carriage led to a 10- to 1,000-fold increase in colonizing S. pneu-
moniae and secondary spread to the lungs (74). The 428- and
923-fold increased expression levels of nanA and nanB in S. pneu-
moniae cells dispersed by IAV infection was particularly interest-
ing, given prior work by McCullers et al. on increased virulence of
S. pneumoniae following IAV infection (18, 75). Their model of
IAV-S. pneumoniae synergism suggests that IAV-encoded
neuraminidases remove sialic acid from eukaryotic cellular sur-
faces, thereby exposing receptors used for S. pneumoniae adher-
ence. Our data implicate an additional role for sialic acid in the
synergism between IAV and S. pneumoniae; IAV- and S. pneu-
moniae-released sialic acid could also be used as a carbon source
for pneumococci and a signal for increased invasiveness.

IAV- and heat-dispersed S. pneumoniae were more virulent
than ATP-dispersed cells in our septicemia model. Genes related
to bacteriocin production were upregulated in IAV- and heat-
dispersed cells and downregulated in ATP-dispersed cells. Bacte-
riocins are small antimicrobial peptides that are active against
closely related bacteria (76). S. pneumoniae isolates that produce
bacteriocins also express immunity proteins to protect them from
the effects of their own bacteriocins. The blp locus, which was
upregulated in our IAV- and heat-dispersed cells, has been shown
to be important for intraspecies competition during S. pneu-
moniae cocolonization in a murine model (77). While typically
thought to be important for colonization, our data suggest that
bacteriocin production may give newly dispersed cells a compet-

FIG 4 Glucose metabolism of bacterial populations. Biofilm bacteria, broth-grown planktonic bacteria (planktonic), or populations actively dispersed from
biofilms after infection with IAV or exposed to increased temperature or ATP were washed in PBS to eliminate any carbon source, and 25 mM glucose was added
at time zero. Intracellular ATP (A) and secretion of lactate (B) were determined 1, 2, 5, 10, 15, 20, 15, and 30 min after addition of glucose. Two separate
experiments were performed in duplicate, and the mean values with standard deviations are depicted in the graphs.
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itive advantage immediately after leaving the biofilm and in the
initial stages of dissemination and infection. In support of our
hypothesis, BlpR, the response regulator that controls bacteriocin
production (77), is highly expressed in vivo in murine brain, lung,
and blood (78). While a clear role for S. pneumoniae bacteriocins
in invasive disease has yet to be identified, bacteriocin receptors in
Gram-negative bacteria (e.g., Escherichia coli) have been shown to
play a multifunctional role in the uptake of nutrients (79). Future
research should examine whether S. pneumoniae bacteriocin re-
ceptors are multifunctional and elucidate the role of bacteriocins
during different stages of S. pneumoniae infection.

Of the triggers studied here to disperse pneumococcal biofilms,
fever is a general response to acute infections (32). ATP is gener-
ally absent in the extracellular environment in healthy tissues, and
its release in the extracellular environment is likely a general re-
sponse to infection with several respiratory viruses, including ad-
enovirus and respiratory syncytial virus (80–82), that serves as a
warning signal that cells are stressed. Therefore, our observation
of changes in pneumococcal virulence in response to heat and
ATP may have implications for respiratory tract infections due to
viruses other than IAV. Our data also have important implications
for experimental studies of S. pneumoniae pathogenesis. The ma-
jority of in vitro biofilm research has examined the growth of S.
pneumoniae biofilms on abiotic surfaces (78, 83). Biofilms formed
on abiotic surfaces differ from those formed in vivo (24). Biofilms
formed on epithelial cells at 34°C have been shown to mimic the in
vivo environment more accurately than those formed on abiotic
surfaces (20). EF3030 is a generally noninvasive strain in mice, and
exposure to stimuli such as IAV and ATP can make EF3030 inva-
sive. Adoption of methods described in this paper could poten-
tially expand the number of S. pneumoniae strains that can be
studied in animal models and produce infection more similar to
human disease. Our models could therefore be used to study a
wider range of pneumococcal strains, including clinical isolates
that are commonly not virulent in mice, as well as other bacterial
species colonizing the nasopharyngeal tract, and mechanisms of
coinfection with other respiratory viruses.

It is important to note that the transcriptional changes we ob-
served involve initial responses of pneumococci to changes in
their environment. As S. pneumoniae invades the middle ear, the
lungs, or the bloodstream, its expression profiles are bound to
change further. In addition, the populations of pneumococci were
grown using different models (e.g., IAV infection was performed
on live epithelial cells, while infections with heat- and ATP-dis-
persed bacteria were performed on fixed cells). While our findings
should be interpreted with this caveat in mind, the various exper-
imental conditions should not present a major limitation, because
each of these experimental conditions produced populations of S.
pneumoniae that differed in virulence in our murine model. Our
data are meant to identify transcriptional changes that explain the
observed differences in virulence. These data also highlight im-
portant areas for future research, including the role of carbohy-
drate metabolism in tissue-specific virulence and the role of bac-
teriocins in pneumococcal disease. Greater understanding of
pneumococcal bacteriocins may provide additional avenues for
the development of therapeutics (76). Genes that encode surface-
exposed proteins and are significantly upregulated in invasive dis-
ease may represent promising vaccine targets (e.g., glpO).
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