SpyAD, a Moonlighting Protein of Group A Streptococcus Contributing to Bacterial Division and Host Cell Adhesion

Marilena Gallotta,* Giovanni Gancitano,** Giampiero Pietrocola,† Marirosa Mora,‡ Alfredo Pezzicoli,§ Giovanna Tuscano,¶ Emiliano Chiarot,∥ Vincenzo Nardi-Dei,¶ Anna Rita Taddei,¶ Simonetta Rindi,¶ Pietro Speziale,¶ Marco Soriani,§ Guido Grandi,§ Immaculada Margarit,¶ Giuliano Bensil* Novartis Vaccines and Diagnostics Srl, Siena, Italy; Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Centre for High Instruments, Electron Microscopy Section, University of Tuscia, Viterbo, Italy

Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein).

The Gram-positive pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes a broad range of human diseases, including superficial pharyngitis and skin infections, that can lead to supplicative sequelae and invasive conditions such as pneumonia, bacteraemia, streptococcal toxic shock syndrome, and necrotizing fasciitis (1–4).

To exploit their infective potential, these bacteria need to survive and proliferate at the infection site and adhere to host cells, allowing colonization and/or infection of deeper tissues. Bacterial growth and host-pathogen interactions are therefore key steps toward a successful infection. To achieve this, GAS has evolved a broad repertoire of virulence factors, which exert their functions at distinct infection stages (4–7) and are regulated during different growth phases and under diverse environmental conditions (2). Among them, cell surface components mediating GAS adherence to eukaryotic cells. Different types of putative streptococcal adhesins and their cellular receptors have been identified, and extensive studies on their functional activity and expression regulation have provided important clues on their contribution to GAS tissue tropism and pathogenesis mechanisms (5–7).

A vaccine against GAS is not yet available, although several efforts have led to the discovery of putative vaccine candidates (8, 9). To attain highly selective identification of few protective GAS antigens, we recently applied a high-throughput strategy, which combines parallel mass spectrometry analysis of peptides generated after protease treatment of live bacteria, analysis of immunogenic antigens by protein array, and quantification of antibody accessible antigens by flow cytometry analysis. This allowed defining a three-protein formulation conferring consistent protection in mice against infection with multiple GAS serotypes (10, 11). Two of the three protective antigens, i.e., streptolysin O and the chemokine protease SpyCEP, were well described for their role in GAS pathogenesis (12, 13), while the function of the third antigen, Spy0269, was completely unknown and is the subject of the present study. Analysis of the publicly available GAS genomes in the NCBI database indicated that the spy0269 gene was present in 20 out of 20 completely sequenced strains, with >93% identity along its 873-amino-acid sequence. We also reported that Spy0269 was exposed on the surface of 18 out of 22 isolates analyzed by fluorescence-activated cell sorting (FACS) using a specific mouse serum and that the protein was highly recognized by 204 out of 239 sera from pharyngitis patients, indicating high surface expression during human infection (10, 14).

Using a combination of genetic, biochemical, and cellular microbiology approaches, we provide here evidence that Spy0269, which we renamed SpyAD (Streptococcus pyogenes Adhesion and Division protein) is a multifunctional protein that plays a role in

Received 15 January 2014 Returned for modification 8 February 2014 Accepted 15 April 2014 Published ahead of print 28 April 2014

Editor: A. Camilli
Address correspondence to Immaculada Margarit, immaculada.margarit_y_rosi@novartis.com, or Guido Grandi, guidो.grandi@novartis.com.
* Present address: Giovanni Gancitano, Sebia Srl, Florence, Italy.
† Supplemental material for this article may be found at http://dx.doi.org/10.1128/IAI.00064-14.
The authors have paid a fee to allow immediate free access to this article.
GAS cell division and can mediate bacterial adhesion to epithelial host cells.

MATERIALS AND METHODS

Bacterial strains, growth conditions, and plasmids. The GAS M1-3348, M1-SF570, and M9-2720 strains and culture conditions were previously described (10). The plasmids used to express recombinant proteins in *Escherichia coli* BL21(DE3) (Novagen) were pET21b (+) for the His tag mutants and pET24b (+) for the tagless derivatives. The plasmid pAM-P80 (15) was used for SpyAD expression in *Lactococcus lactis* subsp. cremoris MG1363, which was cultured at 30°C with 5% CO2 in M17 medium (Difco Laboratories) containing 0.5% (wt/vol) glucose (GM17), with 20 µM ml−1 chloramphenicol to maintain the episomal plasmid.

In silico analysis. BLASTP search of protein sequence homologies was carried out using the GenBank nonredundant protein database (http://blast.ncbi.nlm.nih.gov/). SignalP server (http://www.cbs.dtu.dk/services/SignalP/) was used for the prediction of signal peptides, COILS (http://embnet.vital-it.ch/software/COILS_form.html), and 2ZIP (http://2zip.molgen.mpg.de/) servers were used to predict the propensity of coiled-coil structures, and the TMpred server was used for the prediction of transmembrane regions and orientation (http://embnet.vital-it.ch/software/TMPRED_form.html).

Cloning, expression, and purification of recombinant SpyAD and derivatives. DNA manipulations, including restriction digests, cloning, ligation, and DNA transformation into *E. coli*, were performed according to the manufacturer’s recommendations (BioLab Laboratories) and using standard protocols as previously described (16). Plasmid DNA was isolated from *E. coli* with Qiagen plasmid mini- or maxiprep kits (Qiagen) according to the manufacturer’s protocol. The oligonucleotides used to clone the recombinant proteins are listed in Table S1 in the supplemental material. Recombinant His-tagged SpyAD and derivatives were expressed in *E. coli* BL21(DE3) cells and purified as previously described (11). Tagless recombinant SpyAD was purified from *E. coli* total cell extracts by two chromatographic steps using Q-Sepharose and butyl Sepharose. Briefly, about 80 to 110 g of bacterial lysate soluble fraction was applied to a 200-ml Q Sepharose XL column (GE Healthcare Biosciences, Piscataway, NJ), equilibrated with 20 mM Tris (pH 8.5). The protein did not bind to the resin, and the flowthrough was collected. Fractions containing SpyAD were pooled and dialyzed against 50 mM Na phosphate (pH 6.8).

Construction of SpyAD mutated strains and analysis of bacterial sedimentation. SpyAD in-frame deletion and complementation mutants of GAS M1-3348 strain were constructed as already described (17). Briefly, the in-frame deleted gene product was obtained by splicing-by-overlap-extension PCR (18) using the primers reported in Table S2 in the supplemental material. The amplification product was cloned using BamHI and XhoI restriction sites in the temperature-sensitive shuttle vector pJR233 (16). Transformation and allelic exchanges were performed as described previously (16, 19, 20). Briefly, the GAS M1-3348 strain was transformed by electroporation, and transformants were selected after growth at 30°C on agar plates containing 1 µg of erythromycin (Sigma) ml−1. Transformants were then grown at 37°C with erythromycin selection. Integrant strains were serially passed for 5 days in liquid medium at 30°C without erythromycin selection to facilitate the excision of plasmid, resulting in spyAD gene deletion on the chromosome. Erythromycin-sensitive colonies were screened by PCR for the absence of the target allele, confirming plasmid excision in the ΔspyAD derivative strain. Complementation plasmids were constructed by PCR by using the primers reported in Table S2 in the supplemental material, which allowed the introduction of Nos t and BglII restriction sites. The genomic region between the ribosome binding site and the stop codon of spyAD gene was amplified, and the PCR product was digested with BamHI and NotI restriction sites and ligated to BglII/NotI-digested pAM401 (21). The spyAD gene was inserted into pAM-p80, under the control of the GBS pilus island promoter (15). The expression of the protein SpyAD in the ΔspyAD/pAMspyAD complemented strain was confirmed by cyttofluorimeter analysis and immunoblotting on bacterial total cell extracts.

Optical and scanning electron microscopy. GAS M1-3348, ΔspyAD, and ΔspyAD/pAMspyAD strains were grown in THB at 37°C at an OD600 of 0.4. Bacteria were then centrifuged for 10 min at 3,000 × g at room temperature and washed in PBS, and drops of bacterial suspensions were
used for the preparation of slides and grids. Slides were observed under an optical microscope with 263 lens. Grids (Formvar-carbon-coated nickel grids) were fixed in 3% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3) for 2 h at 4°C. After two washes in sterile water for 30 min each at 4°C, the grids were stained with 1% OsO4 in 0.1 M cacodylate buffer (pH 7.3) for 1 h at 4°C. After two washes in the same buffer for 30 min each at 4°C, fixed bacteria were dehydrated in 30, 50, 70, 80, 95, and 100% alcohol for 5 min for each change at 4°C. Observation of bacteria was performed by FEOL 1200 EX at 80 kV using a charge-coupled device camera (Megaview; Elobie). Images were imported into Adobe Photoshop and Illustrator CS3 for figure preparation.

Confocal microscopy. To verify SpyAD localization on the cell surface, bacterial cultures of GAS M3-3348, M3-3348ΔspyAD, and M9-2720 strains were grown in THB at 37°C to mid-logarithmic phase (OD600 = 0.4), washed once with PBS, suspended in a half volume of PBS blocking buffer (0.1% BSA–10% normal goat serum [NGS]), and incubated 20 min at room temperature. After a wash with PBS–0.1% BSA, bacteria were incubated at room temperature for 20 min in the same volume of PBS–0.1% BSA with either mouse anti-FtsZ (1:500) or rabbit anti-SpyAD (1:500) polyclonal antibodies. After two washes with PBS–0.1% BSA, bacteria were incubated for 15 min at room temperature with secondary antibodies, either goat anti-mouse–Alexa Fluor 568- or rabbit anti-Alexa Fluor 488-conjugated anti-IgG (Molecular Probes) at 1:1,000. Labeled bacteria were washed twice with PBS–0.1% BSA, suspended in the same volume of PBS–1% formaldehyde, and allowed to adhere to polylysine slides (Thermo Scientific) for 20 min at room temperature. After four washes with PBS, the slides were incubated with biotinylated wheat germ agglutinin (WGA; 1:500)–streptavidin 647 (1:1,000) for 15 min at room temperature, washed three times with PBS, and mounted with ProLong Gold antifade reagent containing DAPI (‘4,6-diamidino-2-phenylindole; Molecular Probes). Images were obtained using a Zeiss LSM 710 confocal microscope (Carl Zeiss).

Immunoprecipitation assay. For immunoprecipitation assays, equimolar concentrations (0.42 μM) of FtsZ and SpyAD 33-849 or its fragments were incubated under gentle shaking for 2 h at 22°C in 0.1 M phosphate buffer (pH 7.2). A polyclonal antibody (1:5,000) against either FtsZ or SpyAD was then added to the mixture, followed by incubation overnight at 4°C. The immunocomplex was precipitated by addition of 90 μl of protein A-Sepharose for 45 min at 4°C. Agarose beads were recovered by centrifugation at 1,600 × g for 2 min at 4°C, washed three times with phosphate buffer, suspended in 20 μl of Laemmli’s sample buffer, and boiled for 5 min. After centrifugation, supernatants were subjected to 12.5% SDS-PAGE, and the proteins were electrophoretically transferred to a nitrocellulose membrane (GE Healthcare), which was blocked with 5% (wt/vol) nonfat dry milk in PBS overnight and then incubated for 1 h with anti-SpyAD or anti-FtsZ polyclonal antibodies (1:10,000). After several washes with 0.5% (vol/vol) Tween 20 in PBS (PBST), the membrane was incubated for 45 min with horseradish peroxidase (HRP)-conjugated rabbit anti-mouse IgG. Finally, after additional washes with PBST, the membrane was treated with enhanced chemiluminescence (ECL) detection reagents 1 and 2 according to the procedure recommended by the manufacturer (GE Healthcare) and exposed to an X-ray film for 30 to 60 s. SpyAD binding to eukaryotic cells. Cultured cells were detached from plates by using enzyme-free Hanks-based cell dissociation buffer (Gibco). After a wash with PBS, the cells were dispensed in a 96-well plate with U-shaped bottoms (2 × 105 cells/well). Serial 2-fold SpyAD dilutions in PBS plus BSA 0.5% were added to cells, and incubation was allowed to proceed for 1 h at 4°C. The cells were then washed twice in PBS, suspended in PBS plus 0.5% BSA containing SpyAD-specific mouse polyclonal antisera (1:200 [vol/vol]), and incubated at 4°C for 45 min. After two washes with PBS, the cells were suspended in a PBS plus 0.5% BSA solution with anti-mouse phycoerythrin-conjugated secondary antibody (1:100 [vol/vol]; Jackson ImmunoResearch Laboratories), and incubation was prolonged for 30 min at 4°C. Bound protein was detected using a FACSCanto cytometer, and data were analyzed using Flowjo software. The delta mean fluorescence intensity (ΔMFI) of each sample was obtained subtracting from the sample MFI the corresponding value obtained with samples treated with an unrelated polyclonal serum. A Scatchard analysis of the obtained MFI data was used to derive an apparent cell binding affinity (Kd), defined as the concentration determining the saturation of 50% of the receptors present on the cells.

To chemically modify cells surface components, A549 cells were treated as previously described with minor modification (23). For surface proteins, A549 cells were preincubated with pronase (Sigma) or trypsin (Gibco) in fetal calf serum (FCS)-free Dulbecco modified Eagle medium (DMEM) at 37°C in 5% CO2 for 20 min. For carbohydrates, A549 cells were preincubated with sodium periodate (NaIO4; Sigma) or heparinase I (Sigma) in FCS-free DMEM at 37°C in 5% CO2 for 1 h. For phospholipids, A549 cells were preincubated with either phospholipase A2 (porcine pancreas; Sigma) or phospholipase C (Bacillus cereus; Sigma) in FCS-free DMEM at 37°C in 5% CO2 for 30 min. After incubation, an equal volume of complete medium was added to each well to stop the reaction of each agent. The cells were subsequently washed and incubated with SpyAD as described above.

ELISA. To evaluate FtsZ binding to immobilized SpyAD or its fragments, SpyAD 33-849 (1 μg/well) or its fragments (0.3 μg/well) in 50 mM sodium carbonate (pH 9.5) were immobilized onto microtiter wells overnight at 4°C. To block additional protein–binding sites, the wells were treated for 1 h at 22°C with 200 μl of 2% BSA in PBS. The plates were then incubated for 1 h with increasing amounts of FtsZ. After extensive washings with PBST, bound protein was detected using an anti-FtsZ mouse antibody (1:10,000) in PBS–0.1% BSA, followed by HRP-conjugated rabbit anti-mouse IgG antibody diluted 1:1,000. After these washings, bound conjugated enzyme was treated with a chromogenic substrate, and the absorbance at 490 nm was determined.

To appraise the binding of recombinant SpyAD to eukaryotic putative ligands, flat-bottom 96-well microtiter plates (Maxisorp; Nunc) were coated with 10 μg of each human protein/ml (1 μg/ml)—keratin 1 (Sigma), fibronectin (Sigma), fibrinogen (Sigma), collagens I, III, IV, and V (Sigma), and collagen VI (Becton Dickinson)—and incubated over-night at 4°C. The wells were washed with PBST buffer and blocked for 2 h at 37°C with 2.7% polyvinylpyrrolidone (PVP) in water. After multiple washings, the plates were incubated with SpyAD serially diluted in PBST–1% BSA and incubated for 2 h at 37°C. To detect binding, the plates were washed, incubated with anti-SpyAD serum in PBST for 1 h and 30 min at 37°C, and then incubated with alkaline phosphatase-conjugated secondary antibody in PBST–1% BSA for 1 h 30 min at 37°C. The wells were developed with 1 mg of p-nitrophenyl phosphate (Sigma)/ml in 1 M diethanolamine buffer for 30 min. The reaction was stopped by adding 4 M NaOH, and the absorbance at 405 nm was measured. Wells with PBS only were used as a negative control.

The data were fitted using the following equation: $A = A_{\text{max}} \left[L \right] K_d \left(1 + K_d \left[L \right] \right)$, where A is the absorbance at 490 nm, $[L]$ is the molar concentration of ligand, and K_d is the affinity association constant. The apparent dissociation constant (K_d) was calculated as the reciprocal of K_d.

Far-Western blotting. Human keratin 1 (Sigma catalog no. K0253) and collagen VI (Becton Dickinson catalog no. 354261) were separated by using SDS–4 to 12% PAGE under reducing conditions and then electroblotted onto a nitrocellulose membrane using an iBlot dry blotting system (Invitrogen). After blotting, the membranes were incubated with 5% skimmed milk in PBST overnight. To detect keratin 1 and collagen VI, the nitrocellulose membranes were incubated with a polyclonal anti-keratin 1 (Sigma catalog no. HP1017917) and a polyclonal anti-collagen VI antibody (Abcam catalog no. Ab6588), respectively. For far-Western blotting, the membranes were incubated with recombinant SpyAD (5 μg/ml) for 2 h at room temperature. After extensive washing with PBST, the membrane was incubated for 1 h with a rabbit polyclonal anti-SpyAD antibody. After several washes in PBST, the membrane was incubated for 1 h with HRP-conjugated mouse anti-rabbit IgG. Finally, the membrane was
of 873 amino acids with a molecular mass of 94.7 kDa. The corresponding protein sequence was analyzed in silico to highlight any possible motifs and homologies to known bacterial proteins. We predicted a signal peptide with a proposed cleavage site between residues alanine 36 (A36) and aspartic acid 37 (D37). No typical cell wall anchoring (LPXTG) motif shared by surface-anchored proteins of Gram-positive bacteria was deduced at the C terminus, although a putative hydrophobic transmembrane domain followed by a charged tail was identified (residues 850 to 873). Secondary structure predictions indicated a high probability of coiled-coil arrangements in protein regions 58 to 261 and 554 to 721, the latter including a leucine zipper motif between residues L673 and L701 (Fig. 1A).

Among the homologies with other bacterial proteins found by BLASTP analysis, three appeared particularly intriguing to us. A short SpyAD stretch (residues 96 to 228) exhibited some degree of similarity with a domain of EzrA from Bacillus subtilis (26), an interactor of FtsZ regulating the bacterial division system. In addition, SpyAD exhibited partial homology to reported adhesins of other streptococcal species: the Streptococcus uberis adhesion protein SUAM (39% identity, 58% positivity along the full amino acid sequence), known to mediate adhesion to mammalian epithelial cells, and the Streptococcus equi subsp. equi 4047 membrane protein SEQ_0339 (51% identity, 67% positivity) (27), containing the Se89.9 fragment that strongly binds to the stratified squamous epithelium of the equine lingual tonsil, a point of entry for S. equi (J. F. Timoney, unpublished data). SpyAD’s relationship to these and other streptococcal proteins extended to secondary structure predictions of coiled-coil arrangements (see Fig. S1 in supplemental material), as well as to the genomic context in which the corresponding gene appeared to be located (see Fig. S2 in supplemental material). In fact, spyAD and its homologous genes were found between the conserved purR and rpsL sequences in S. pyogenes, S. uberis, S. dysgalactiae, S. equi, and S. zooepidemicus. Interestingly, no DNA sequences were found between purR and rpsL in the evolutionary close S. agalactiae, whereas large genomic regions were found between purR and rpsL in S. suis and S. pneumoniae.

Deletion of the spyAD gene affects the capacity of GAS to properly divide. Searching for a phenotype which could possibly indicate a SpyAD function, we generated an isogenic deletion mutant in the GAS M1-3348 strain (ΔspyAD) in which the protein was not expressed, as confirmed by Western blotting and cytofluorimetric analysis (see Fig. S3 in the supplemental material).
As shown in Fig. 2A and B, the strain showed visible sedimentation in cell culture tubes and a higher sedimentation rate compared to wild type. Optical and scanning electron microscopy revealed the formation of shorter chains by the wild-type strain compared to the \(\Delta \text{spyAD} \) knockout mutant, which formed much longer chains (Fig. 2C, D, and E) that could possibly enhance the formation of aggregates and the observed sedimentation. This phenotype appeared to be specific since it was reverted by transforming the M1-3348 knockout strain with an episomal vector overexpressing SpyAD (Fig. 2A, B, and C).

This experimental evidence, along with the observed homology in cell culture tubes and a higher sedimentation rate compared to wild type. Optical and scanning electron microscopy revealed the formation of shorter chains by the wild-type strain compared to the \(\Delta \text{spyAD} \) knockout mutant, which formed much longer chains (Fig. 2C, D, and E) that could possibly enhance the formation of aggregates and the observed sedimentation. This phenotype appeared to be specific since it was reverted by transforming the M1-3348 knockout strain with an episomal vector overexpressing SpyAD (Fig. 2A, B, and C).

The colocalization of SpyAD with the cell division protein FtsZ at the bacterial septum. Since the localization at the cell septum is a prerequisite of proteins involved in the division process, we investigated the localization of SpyAD on the bacterial cell surface. GAS M1-3348 and its derived \(\Delta \text{spyAD} \) mutant strain were grown to mid-logarithmic phase and analyzed by confocal microscopy using anti-SpyAD rabbit serum and biotinylated WGA lectin to reveal the cell wall peptidoglycan and DAPI to stain nuclei. SpyAD appeared mainly localized at the bacterial septum (Fig. 3A), whereas no staining was observed for the \(\Delta \text{spyAD} \) mutant strain used as negative control (Fig. 3B). When SpyAD expression was restored by complementing the mutation with a plas
mid (pAM) carrying the spyAD gene, staining at the septum was restored (Fig. 3C).

To further support these observations, we compared the cellular localization of SpyAD to that of the cell division protein FtsZ for which septal localization has already been reported in other bacterial species. Colocalization of SpyAD and FtsZ at the cell septum of M9-2720, a strain that expresses large amounts of SpyAD, was investigated by confocal microscopy using rabbit anti-SpyAD and mouse anti-FtsZ specific antibodies. As shown in Fig. 3D and E, we observed overlapping fluorescent signals at the incipient division sites, confirming colocalization. Overall, the obtained data reinforced the hypothesis that SpyAD could be involved in the bacterial cell division process, possibly modulating the GAS divisome machinery.

SpyAD directly interacts with FtsZ in vitro. Having demonstrated that SpyAD colocalizes with FtsZ at the bacterial cell septum, we sought to investigate whether the two proteins could form a molecular complex in vitro. Full-length FtsZ and SpyAD (from amino acids 33 to 849, excluding the putative signal peptide and C-terminal transmembrane domains; Fig. 1A) were purified as soluble recombinant proteins. Equimolar concentrations of the two proteins were incubated in the presence of polyclonal antibodies raised against either FtsZ or SpyAD, and the immunocomplexes were precipitated by addition of protein A/G-agarose beads. Coimmunoprecipitation of SpyAD and FtsZ by antibodies specific against either of the two proteins was confirmed by immunoblotting (Fig. 4A and B, lanes 1, and Fig. 4C and D). As a control, coinubcation of FtsZ with a different S. pyogenes surface protein (SpyCEP) did not result in any signal detection when the immunoprecipitate was subjected to Western blotting with anti-SpyCEP antibodies (data not shown). These data suggested a specific interaction between FtsZ and SpyAD under in vitro conditions.

To further dissect the SpyAD binding capacity toward FtsZ, three fragments of the protein were obtained as His-tagged fusions (Fig. 1B): N-terminal (amino acids 33 to 330) and C-terminal (amino acids 533 to 849) portions with propensity to form coiled-coil structures, as well as the internal region from amino acids 263 to 533. When the three purified SpyAD protein fragments were investigated in immunoprecipitation experiments, only the C-terminal domain was shown to interact with FtsZ, whereas no interactions were observed with the N-terminal or the internal regions (Fig. 4A and B, lanes 2 to 4).

The interaction was further confirmed by immobilizing recombinant SpyAD or its fragments onto microtiter wells, followed by probing with increasing concentrations of FtsZ, and detection of complex formation with anti-FtsZ IgG. As shown in Fig. 4E, dose-dependent interactions with half maximal binding concentrations (K_d) of $(2.2 \pm 0.3) \times 10^{-7}$ M and $(1.0 \pm 0.1) \times 10^{-7}$ M were revealed for SpyAD and C-terminal SpyAD, respectively, whereas no binding was observed for the N-terminal or internal fragments. The data further confirmed a possible role of SpyAD in the S. pyogenes cell division process.

FtsZ has been reported as cytosolic in several bacterial species, but confocal results showing that it can be stained by specific antibodies suggested that in the case of GAS this protein can be...
exposed on the bacterial surface. Surface exposure of FtsZ was further confirmed by FACS analysis of GAS M1-3348, its spyAD deletion mutant, and M9-2720 strains using anti-FtsZ antibodies (see Fig. S4A in the supplemental material). Confocal microscopy experiments comparing wild-type and H9004 spyAD M1-3348 strains indicated identical FtsZ surface exposure and septal localization in presence or absence of SpyAD (see Fig. S4B in the supplemental material).

Recombinant SpyAD binds to mammalian epithelial cells. In silico analysis indicating that SpyAD had homology with reported adhesins and flow cytometry data showing high exposure on the bacterial cell surface led us to hypothesize a second possible role of this protein in mediating GAS interaction with host cells. Cytofluorimetric analysis was used to test whether recombinant SpyAD could bind to human epithelial cells in vitro. As shown in Fig. 5A, SpyAD was able to bind to A549 human pulmonary epi-

FIG 4 Analysis of the interaction between recombinant SpyAD and FtsZ. Western blot analysis of coincubated FtsZ and SpyAD immunoprecipitated with either FtsZ-specific (A and B) or SpyAD-specific (C and D) antisera (indicated as IP) and probed with anti-SpyAD (A and C) or anti-FtsZ (B and D) antibodies (indicated as WB) was performed. FtsZ was coincubated with full-length SpyAD (panels A and B, lanes 1, and panels C and D) or its three fragments (SpyAD$_{33-330}$ [lanes 2], SpyAD$_{263-533}$ [lanes 3], and SpyAD$_{533-849}$ [lanes 4] in panels A and B). (E) Dose-dependent binding of FtsZ to SpyAD. SpyAD and the three protein fragments were immobilized onto microtiter wells and incubated with increasing amounts of FtsZ; binding was detected using anti-FtsZ and conjugated secondary antibodies. The absorbance was measured at 490 nm (A_{490}).

FIG 5 Recombinant SpyAD binding to human epithelial cells. (A) Saturation curve of SpyAD binding to A549 cells. Cells were incubated for 1 h at 4°C with increasing concentrations of recombinant SpyAD from 0.08 to 7.28 µM (x axis). Binding was detected using mouse anti-SpyAD and phycoerythrin-conjugated secondary antibodies, followed by flow cytometry analysis (the mean fluorescence intensity is reported on the y axis). (B) Bar graph showing binding of SpyAD to different human and mammalian epithelial cell lines. The mean fluorescence intensity obtained for each cell line with three different SpyAD concentrations (1 µM, dark gray bars; 0.5 µM, light gray bars; 0.1 µM, white bars) is reported on the y axis. (C) Binding of the three SpyAD protein fragments to A549 cell line. Cells were incubated for 1 h at 4°C with an equimolar concentration of each recombinant fragment (2.5 µM), and binding was measured by flow cytometry as reported above.
therial cells in a dose-dependent manner, and binding could be saturated with an apparent equilibrium dissociation constant (K_d) of approximately $8 \times 10^{-7} \text{ M}$. Binding to other mammalian epithelial cell lines was also investigated, demonstrating that the protein could consistently bind to HEK293, HeLa, and LLCMK2 cells and, to a lesser extent, to ME180 and Detroit cells (Fig. 5B).

To gain additional information on the SpyAD protein region involved in the binding to a putative cell receptor, the three previously described protein fragments were tested for their capacity to interact with A549 cells. As shown in Fig. 5C, only the C-terminal fragment could bind to cells. BLASTP analysis of this fragment versus the previously mentioned SUAM adhesin and the Se89.9 adhesive fragment of the membrane protein SEQ_0339 indicated sequence identity levels of 30 and 49%, respectively, which were similar to those obtained comparing the full-length proteins.

To investigate the chemical nature of the SpyAD putative cell receptor, A549 cells were treated with different concentrations of multicomponent proteolytic enzymes (pronase) or with trypsin prior to binding to recombinant SpyAD. Pronase treatment could reduce or completely abolish SpyAD interaction in a dose-dependent manner, whereas trypsin partially decreased SpyAD binding (Fig. 6A). Heparinase II, phospholipases A2 and C, and sodium periodate did not affect cell adhesion (data not shown), suggesting that glycosaminoglycans, phospholipids, and carbohydrate do not mediate SpyAD binding to epithelial cells, although involvement of a carbohydrate ligand cannot be entirely excluded since the peroxidase reaction requires vicinal hydroxyl groups, which may not be present in the SpyAD ligand binding region. We subsequently tested the capacity of SpyAD to interact with eukaryotic ligands of bacterial adhesins. In vitro binding assays were performed on microtiter plates coated with fibrinogen, fibronectin, keratin 1, and various types of collagen as target molecules, and the binding extent was quantified by using a specific SpyAD polyclonal rabbit antiserum. Recombinant SpyAD appeared to bind to human keratin 1 and collagen VI (Fig. 6B). No significant binding of SpyAD to human fibrinogen, fibronectin, and collagen types I, III, IV, and V was detected.

Binding specificity of SpyAD to keratin 1 and collagen VI was also assessed by Far-Western blotting. This analysis confirmed that SpyAD bound to a protein migrating on SDS-PAGE accordingly with the reported molecular weight for keratin 1 and recognized by an anti-keratin 1 specific antibody (see Fig. S5A and B in the supplemental material). Binding of SpyAD to the bands corresponding to denatured alpha subunits of collagen VI was not apparent, but staining was visible for a higher-molecular-weight species (see Fig. S5C and D in the supplemental material). This high-molecular-weight material, also recognized by anti-collagen VI antibodies, possibly represents nonreduced cross-linked collagen VI (31, 32). The data suggest that SpyAD binds preferably to non-denatured collagen VI organized in high-level structures. As shown in Fig. S6, lane 2, in the supplemental material, no binding to the fibronectin used as a negative control was detected.

FACS analysis using collagen VI specific antibodies confirmed high exposure of collagen VI on the surface of all cell lines tested for SpyAD binding (see Fig. S6 in the supplemental material). No signals were instead obtained using anti-keratin 1 antibodies in the investigated experimental conditions. However, we cannot rule out greater accessibility in vivo during infections and other inflammatory conditions that may significantly alter epithelial integrity or during repair and remodeling of epithelial surfaces. Overall, the data suggest that a protein ligand is likely to mediate binding of SpyAD to epithelial cells through a direct protein-protein interaction and that collagen VI and keratin 1 are two potential receptors.

Expression of SpyAD in *L. lactis* mediates cell adhesion *in vitro* and *in vivo*. Comparative cell binding assays using the wild-type M1-3348 strain and its ΔspyAD derivative to definitely confirm the role of SpyAD in GAS cell adhesion could not be undertaken due to the phenotype exhibited by the knockout strain, which prevented precise bacterial counting.

To overcome this drawback, we expressed SpyAD in the heterologous bacterial host *Lactococcus lactis* (33, 34). This nonpathogenic bacterium does not significantly adhere to human epithelial cells but is capable of efficiently expressing and exporting functional exoenzymes to the cell surface (15, 35). Expression of wild-type SpyAD was obtained in *L. lactis* MG1363 using the pAM episomal vector in which protein synthesis is driven by the strong P80 promoter from *Streptococcus agalactiae* (15). Figure 7A shows that the expression of wild-type SpyAD in *L. lactis* resulted only in a partial shift of bacterial fluorescence after staining with anti-SpyAD polyclonal antibodies (central panel) compared to the negative-control strain containing the empty vector only (left panel). Low expression could possibly be due to inefficient recognition of SpyAD by the *L. lactis* secretion/anchoring machineries.
Gallotta et al.

FIG 7 In vitro and in vivo cell adhesion of L. lactis expressing SpyAD. (A) Flow cytometry analysis of L. lactis expressing either full-length SpyAD (pAM-SpyAD) or the SpyAD/M1 chimera (pAM-SpyAD/M1) compared to a strain carrying the vector alone (pAM). Filled and empty histograms indicate staining of bacteria with a serum raised against alum adjuvant alone and with a polyclonal mouse SpyAD antiserum, respectively. (B) Bar graph showing in vitro adhesion of the three L. lactis strains to A549 human epithelial cells and specific inhibition of the binding by anti-SpyAD antibodies. The percentage of adhesion of L. lactis to A549 cells is reported on the y axis. Serum dilutions tested for the inhibition of cell binding are reported below the x axis. Black, light gray, and dark gray bars illustrate the results obtained when cells were incubated with the pAM, pAM-SpyAD, and pAM-SpyAD/M1 L. lactis strains, respectively (the multiplicity of infection was 20:1). Means and standard deviations from six to eight experiments are represented. Statistical significance: **, P < 0.01; *** P < 0.001. (C) In vivo adhesion of the three recombinant L. lactis strains to the nasal mucosa of C57Bl/6 mice. The strains used to infect mice intranasally (2 × 10⁷ to 5 × 10⁷ CFU/mouse) are indicated on the x axis. The y axis reports the number of recovered CFU per million bacteria inoculated by performing nasal washes 20 h after infection. *, P < 0.05; ns, not significant.

To obtain a L. lactis strain highly expressing SpyAD, we attempted to obtain a recombinant protein fusion derivative containing the export and anchoring signals of the S. pyogenes M1, a strategy previously used for other heterologous proteins (36–39). The recombinant SpyAD/M1 chimera was obtained by replacing both the SpyAD signal peptide and C-terminal putative transmembrane domain sequences with the M1 leader peptide and cell wall anchoring sequences, respectively. As shown in the right panel of Fig. 7A, the SpyAD/M1 chimera was highly exposed on the cell surface of L. lactis. Furthermore, FACS analysis with MAbs directed against different SpyAD regions showed a similar reaction pattern on wild-type M1-3348 and on L. lactis expressing both the original SpyAD sequence and the SpyAD/M1 chimera (see Fig. S7 in the supplemental material), suggesting that the conformation of the exposed chimera was not significantly altered.

To demonstrate that Lactococcus surface-localized SpyAD mediated bacterial binding to cells, recombinant strains expressing either SpyAD or the protein chimera were tested in vitro and in vivo. A549 cells monolayers were infected with the L. lactis derivative strains, and the percentage of cell-associated CFU versus the total bacterial input was estimated (Fig. 7B). L. lactis strains expressing the two forms of SpyAD appeared to significantly adhere to A549 cells, as opposed to L. lactis containing the episomal expression vector only. L. lactis expressing the SpyAD/M1 chimera had the highest adhesion rate, a finding consistent with the higher cell surface exposure of the protein. The specificity of SpyAD-mediated adhesion was confirmed by binding inhibition experiments showing that anti-SpyAD purified IgG was able to prevent binding of the recombinant strains to A549 cells.

Finally, to investigate whether SpyAD could mediate adhesion in vivo, CD1 mice were infected intranasally with the L. lactis strains expressing either the wild-type antigen or the SpyAD/M1 chimera. Bacterial recovery from nasal washes 20 h after infection demonstrated a higher number of CFU in animals infected with L. lactis expressing SpyAD compared to control bacteria containing the empty vector. Statistically significant differences could be attained in mice infected with the SpyAD/M1 chimera versus the negative control (Fig. 7C).

DISCUSSION

The conserved, surface-associated GAS antigen Spy0269, here renamed Streptococcus pyogenes Adhesion and Division protein, or SpyAD, elicits a prominent protective immune response in mouse models of GAS infection (10, 40, 41). The data presented here suggest that SpyAD contributes to both bacterial division and adhesion to host cells. The ability of some proteins to exert more than one biological function is well described both in eukaryotes and in prokaryotes, and several “moonlighting” proteins have been identified in a wide range of human pathogens, including group A streptococcus. Among them, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase, chaperonin 60, Hsp70, and peptidyl prolyl isomerase are known bacterial moonlighting proteins playing a role in bacterial virulence (42–44).

The striking long-chain phenotype observed when the spyAD gene was deleted, as well as the evidence showing that GAS SpyAD is localized in the bacterial septum and that a recombinant version of the protein can interact with FtsZ, strongly suggested that SpyAD is involved in the process leading to cell division.

A common theme in bacterial cell division is the initial polymerization of the tubulin homolog FtsZ into a Z-ring, followed by recruitment of additional proteins that assemble into the divisome. This large macromolecular complex is constituted of cytosolic and membrane components that were recently shown to incorporate both the cell division apparatus and the peptidoglycan synthesis machinery (45, 46). FtsZ polymerization into the Z-ring provides a driving force to constrict the plasma membrane of the parent cell at the equatorial level, resulting in the formation of two equal daughter cells. EzrA, with which SpyAD showed partial homology, was first identified in B. subtilis as a negative regulator of Z-ring assembly that enhances FtsZ GTP hydrolysis and depoly-
merization, thus controlling cell division dynamics to maintain correct cell size (26, 47). EzrA was also shown to positively regulate cell elongation by interacting with the penicillin-binding protein PBPs (48), and its expression levels and multiple interactions with the divisome machinery components determine distinct roles in the S. aureus cell division process (49). The precise role of SpyAD in cell division was not determined in the present study and will be the subject of our future studies. Recent investigations have clearly indicated that the divisome of E. coli (50), S. pneumoniae (51), and S. aureus (49) are built by a complex network of interactions where each component interacts with multiple partners. By homology search, we identified the GAS counterpart of most genes involved in division of S. pneumoniae (see Table S4 in the supplemental material) and we predict that, in addition to FtsZ, SpyAD possibly interacts with other components of the GAS cell division apparatus and/or the peptidoglycan synthesis machinery located in the septum of Gram-positive cocci (52, 53). Indeed, SpyAD shares structural features of many divisome interacting proteins including coiled-coil arrangements and a leucine zipper motif.

A second possible role of SpyAD as a novel GAS adhesin was evidenced by its capacity to bind to eukaryotic cells in vitro and to mediate bacterial adhesion to the nasal epithelium in vivo. SpyAD could adhere to different epithelial cell lines and also to human brain microvascular endothelial cells (data not shown). The absence of strict cell type specificity is not unexpected, since GAS and other streptococci have a large pool of molecules that mediate host cell adhesion with various affinities (6, 7). A two-step mechanism has been proposed for GAS cell adhesion according to which an initial weak and reversible contact with host cells is followed by a second adhesion step mediated by different arrays of adhesins, which confer cell and tissue specificity (54). We hypothesize that SpyAD may interact with the host at a stage of infection in which a weak and low specific adhesion is required, possibly binding to cellular surface-exposed proteins or the extracellular matrix. In vitro binding experiments to eukaryotic cell proteins actually indicated that SpyAD can bind to human collagen VI and keratin 1. Collagen VI is localized in vascular walls and in the interstitial space of the upper and lower airways, beneath the basement membrane of the epithelium, and is a target for streptococcal adhesions, including S. pyogenes M protein (55). Keratin 1 and its heterodimer type I partner, keratin 10, are major components of the cytoskeleton in suprabasal keratinocytes of the stratified squamous epithelia (56). Keratin 1 is also present on the cell surfaces of endothelial cells (57). We can envisage that infections and other inflammatory conditions may significantly alter epithelial integrity, leading to partial or complete shedding of basal cell lamina and unmasking of potential receptors for bacterial adhesion (58, 59). This scenario would fit well with the fact that GAS readily colonizes the nasal and upper respiratory tract epithelia, tissues that frequently undergo tissue repair and remodeling.

The assignment of distinct roles to SpyAD raised the intriguing question regarding how this protein is able to interact both with host cell ligands and with FtsZ, which was reported as cytoplasmic in several bacterial species (45, 46). However, in silico analysis of GAS FtsZ using different topological prediction software (e.g., TMpred) indicated the presence of both cytosolic and extracellular domains. FACS results and confocal microscopy confirmed that both SpyAD and FtsZ are exposed on the surface of S. pyogenes. The data are consistent with previous evidence indicating that FtsZ-derived peptides could be obtained by “surface” analysis of live GAS SF370, where live bacteria were treated with proteases, and the peptides released from surface exposed proteins were analyzed by mass spectrometry (11). Other examples of FtsZ homologs present on the bacterial surface include the cell division protein of Bartonella bacilliformis containing a C-terminal region that was shown to be immunogenic and surface exposed (60). This experimental background confirms that SpyAD localization is compatible with interactions with both FtsZ and host cell ligands. In this context, the SpyAD C terminus (316 amino acids) may be sufficiently long to mediate in due time two different interaction types.

In conclusion, based on the evidence reported in the present study, we predict that induction of functional antibodies against SpyAD can impair the capacity of the pathogen to properly divide and colonize specific host niches. This may contribute to the observed SpyAD-mediated highly protective immune response in mouse models of infection, which makes this antigen an excellent candidate for a multicomponent broadly effective vaccine against group A streptococcus.

Acknowledgments
We thank Francesco Berti, Fabiana Falugi, Laura Giuicchi, Paolo Ruggiero, and Sabrina Capo for their support.

This study was supported by internal funding from Novartis NV and by the Italian Ministry of Instruction, University and Research, Rome, Italy (MIUR grant 10911).

References

