






mimic mucin in the intestinal environment, we examined the mo-
tility of V. cholerae cells in liquid medium with or without mucin
by using a live-cell imaging system. Individual wild-type, vpsA
mutant, and vpsR(Con) mutant cells containing a constitutively
expressed gfp gene inserted into the lacZ locus were tracked under
a microscope for 60 s, and the moving track was plotted (Fig. 3A).
It is apparent that V. cholerae cells were significantly more motile
in liquid medium with mucin than in the same medium without
mucin. When the velocities of different cells were measured, we
found that on average, vpsA mutant cells were faster than wild-
type cells and vpsR(Con) mutant cells were slower (Fig. 3B). These
data suggest that mucin affects the motility of V. cholerae in the
liquid medium just as it does on the semisolid medium and that
the velocity of V. cholerae in mucin is inversely correlated with
VPS production.

More mucin binds to VPS-producing cells than to non-VPS-
producing cells.In order to understand why bacteria that pro-
duce more VPS display slower motility in mucin, we examined the
mucin-VPS interaction by comparing the mucin adhesion abili-
ties of wild type, vpsA mutant, and vpsR(Con) mutant cells. The
vpsA mutant did not form biofilms, whereas the vpsR-overex-

pressing strain formed thicker biofilms than the wild type (Fig.
4A). These data are consistent with previous publications (6, 29)
and indicate that these strains produce different amounts of VPS.
We then incubated cells that had different amounts of VPS asso-
ciated with mucin and determined how much mucin binds to
cells. We found that under the test condition, approximately 0.7
mg mucin was bound to 109 wild-type cells (Fig. 4B). The mucin
adhesion capacity of the vpsA mutant was significantly reduced
from that of the wild type, while the mucin adhesion capacity of
the vpsR(Con) mutant was increased (Fig. 4B). These data suggest
that mucin may bind to polysaccharides produced by V. cholerae
in a VPS concentration-dependent fashion. The interaction be-
tween mucin and VPS may produce a substantial force to slow
down V. cholerae motility in mucin.

Inhibition of vpsexpression by mucin promotes distal colo-
nization by V. cholerae.We have shown that V. cholerae migrates
faster in mucin-containing medium than in medium without mu-
cin and that vpsA mutant cells swim faster than wild-type cells.
How mucin affects vps expression is not known. We therefore
performed qRT-PCR on wild-type cells to compare vps expression
in the presence and in the absence of mucin. Figure 5A shows that
vpsA expression was reduced �2-fold when V. cholerae was ex-
posed to 0.04% mucin for 1 h. Since vpsA is activated by VpsR and
VpsT (6, 7), we also examined the expression of vpsR and vpsT in
the presence of mucin. We found that both vpsR transcription and
vpsT transcription were inhibited upon exposure to mucin (Fig.
5A). Based on these findings, we hypothesized that when V. chol-
erae enters the small intestine of the host, it may sense a certain
component(s) by unknown mechanisms through VpsR and
VpsT, which leads to the downregulation of vps expression and to
faster migration in the mucosa, ultimately enabling the bacterium
to colonize the distal small intestine efficiently (Fig. 5B). To test
this hypothesis, we decided to use the infant mouse model for
comparison of the colonization abilities of the wild-type, vpsA
mutant, and vpsR(Con) mutant strains. We reasoned that if V.
cholerae vps expression is repressed in vivo by mucosal signals, the
loss of such regulation (i.e., vpsR is constitutively expressed) may
have adverse effects on colonization. Figure 5C shows that for
infant mice coinoculated with wild-type and vpsR(Con) cells, the
CFU counts of the two strains recovered from proximal regions of
the small intestine at 24 h postinfection were similar; however,
fewer vpsR(Con) cells than wild-type cells colonized the medial
and distal regions of the small intestine. On the other hand, the
vpsA mutant displayed no colonization defects. These data suggest
that regulation of polysaccharide synthesis in response to mucosal
signals may contribute to the spatial distribution of V. cholerae
colonization along the intestinal tract. Of note, a previous report
using a rugose variant of V. cholerae has shown that vps is impor-
tant for the colonization of infant mice (29). It is possible that the
different strain background resulted in this discrepancy. The vps
genes of C6706 have been shown previously not to be required for
the colonization of infant mice (30).

DISCUSSION

During infection, V. cholerae has to penetrate the mucosal layers of
the host small intestine in order to colonize the epithelial surface.
In this study, we found that the motility of V. cholerae cells is
increased upon exposure to mucin, the major component of mu-
cus. Through a genetic screen, we discovered that Vibrio polysac-
charide (VPS) synthesis plays a negative role in mucin-enhanced

FIG 2 Relationship between VPS production and motility in mucin. (A) Ge-
netic structure of the Vibrio polysaccharide synthesis (vps) locus (29). Arrow-
heads point to the locations of the transposon insertions that affected V. chol-
erae motility in mucin. (B) Motilities of wild-type (wt), vpsA mutant, and
vpsR-overexpressing mutant [vpsR(Con)] cells in semisolid plates in the ab-
sence (	) and in the presence (�) of 0.4% mucin. The plates were incubated at
37°C for 6 h. (C) Diameters of motility zones in the experiments for which
images are shown in panel B. Data are means � standard deviations from three
independent experiments. Asterisks indicate significant differences (P, �0.05
by the Student t test).
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FIG 3 Live-cell imaging of V. cholerae motility in mucin. Wild-type (wt), vpsA mutant, and vpsR(Con) mutant cells harboring a constitutively expressed GFP
marker were grown in modified LB medium in the absence or in the presence of 0.4% mucin. The cells were loaded onto 35-mm glass-bottom dishes, and their
movements were visualized using a Nikon spinning-disk confocal microscope and an UltraVIEW VoX system (PerkinElmer). (A) The images were recorded at
1-s intervals for 1 min. (B) Volocity 3D image analysis software (PerkinElmer) was used to analyze the data and to calculate the velocity by measuring the distance
traveled by each cell in a given time. Each red horizontal bar indicates the mean of the velocities. NS, no significance. Asterisks indicate significant differences
(P, �0.05 by the Student t test).
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motility, possibly due to the physical entanglement of VPS and
mucin through hydrogen bonds and van der Waals interactions
(31). We also found that the level of vps expression was reduced in
the presence of mucin. Constitutive expression of vps in V. chol-
erae led to reductions in the levels of bacterial colonization of
distal segments of the small intestine in the infant mouse model.
These results suggest that V. cholerae is capable of modulating its
gene expression profile in response to mucosal signals so as to
migrate efficiently through mucus and find suitable niches to col-
onize in hosts. This underscores the importance of fine-tuned
gene expression in enabling V. cholerae to adapt to altered envi-
ronmental conditions quickly. VPS is the major component of V.
cholerae biofilms. It has been postulated that V. cholerae may enter
hosts while in a biofilm (30, 32) and that the bacteria need to
disperse from biofilms in order to colonize intestines efficiently
(30, 33). Recently, we showed that the bile salt taurocholate pro-
motes the dispersal of V. cholerae biofilms, possibly by degrading
the VPS matrix (34). The level of vps expression in the dispersed
cells (planktonic state) is likely lower than that in biofilms, and vps
expression is further repressed upon the sensing of mucin com-
ponents, which results in fast motility in mucus. Exactly how V.
cholerae penetrates mucin is not known. We show that flagellar
mutants are nonmotile on plates containing mucin (see Table S1
in the supplemental material). A previous report using a mucin
column showed that V. cholerae becomes nonflagellated during
mucin penetration and that flagella are required only for the initial
entrance into mucus (24). We suspect that the mechanism of mo-
tility on mucin-containing plates may be different from that in
mucin columns. Further studies are required to understand how
V. cholerae moves in mucus.

The host produces mucus that covers the gastrointestinal tract
to protect mucosal epithelial cells from exposure to potential en-
teric pathogens. However, enteric pathogens have evolved to rec-
ognize mucosal environmental cues and have developed a range of
strategies to subvert the mucus barrier (35). We show here that V.
cholerae reduces vps expression in order to promote fast move-
ment in mucin. Many pathogens produce mucin-degrading en-
zymes to avoid aggregation by mucus (see, e.g., references 36 and
37). Helicobacter pylori can alter the pH of mucus to decrease the
viscoelasticity of mucin (38). Some pathogens avoid the mucus
barrier by entering the intestinal mucosa via the M cells (39).
Furthermore, mucus may serve as a chemoattractant for particu-
lar enteric pathogens, which use it as an environmental cue to
regulate pathogenesis-related genes (40). Interestingly, through a

FIG 4 VPS-mucin interaction in vitro. (A) Biofilm formation by the wild-
type, vpsA mutant, and vpsR(Con) mutant strains. The strains were grown in
LB medium at room temperature for 24 h. Biofilm formation was visualized by
staining with 0.3% crystal violet (30). (B) The suspension of wild-type, vpsA
mutant, or vpsR(Con) mutant cells was mixed with 1 ml of mucin solution (1
mg/ml) and was incubated at 37°C for 1 h. The free mucin in the supernatant
was quantified using the PAS staining method (25). Mucin adsorption was
calculated by subtracting the free mucin concentration from the initial mucin
concentration. Data are means � standard deviations for three independent
experiments. Asterisks indicate significant differences (P, �0.05 by the Stu-
dent t test).

FIG 5 VPS production affects V. cholerae colonization. (A) vps expression in
the presence of mucin. Wild-type V. cholerae was incubated in the absence and
in the presence of 0.04% mucin for 1 h. RNA was isolated and was subjected to
qRT-PCR analysis of vpsA, vpsR, and vpsT transcription. The changes in the
transcription of these genes were calculated by normalizing the number of
transcripts in the presence of mucin to that in the absence of mucin. Data are
means � standard deviations for three independent experiments. Asterisks
indicate statistically significant differences between transcription in the pres-
ence (�) of mucin and transcription in the absence (	) of mucin (P, �0.05 by
the Student t test). (B) Working model of vps expression affecting V. cholerae
motility in the intestinal tract. (C) Colonization of the small intestine by wild-
type and vpsA mutant strains (left) and by wild-type and vpsR(Con) mutant
strains (right) in infant mice. After a 24-h incubation, the small intestines were
divided into three approximately equal lengths, which were homogenized sep-
arately in order to quantify the number of V. cholerae cells colonizing each
segment. The competitive index is calculated as the output ratio of the mutant
to the wild type normalized to the input ratio of the mutant to the wild type.
Asterisks indicate significant differences (P, �0.05). NS, no significance.
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capillary assay, we found that V. cholerae is also chemoattracted to
mucin (see Fig. S2 in the supplemental material), which may con-
tribute to fast V. cholerae motility in mucin. Deletion of CheA2,
one of the three CheA homologs, which is critical for the che-
motaxis of V. cholerae under standard conditions (27), abolished
motility in the absence and in the presence of mucin (see Table S1
in the supplemental material).

How V. cholerae represses vps expression in response to mucin
is not known. VPS production is regulated by quorum sensing (30,
41). We have found that quorum sensing may not be directly
involved in the regulation of mucin-mediated vps repression (see
Table S1 in the supplemental material). However, regulation of
vps expression is apparently rather complicated, and many factors
are involved (42). For example, cyclic di-GMP (c-di-GMP), a
ubiquitous second messenger in bacteria (43), positively regulates
vps expression and biofilm formation (44, 45). Interestingly, c-di-
GMP negatively regulates motility and virulence gene expression
in V. cholerae (46–48). Hence, it is possible that components in
mucin may repress vps expression by modulating intracellular c-
di-GMP concentrations during V. cholerae infection. Further
investigation is needed to examine the role of c-di-GMP in mucin-
mediated vps regulation. Studies to reveal what global transcrip-
tome changes occur during the interaction of V. cholerae with
mucin and whether those changes are important for V. cholerae
pathogenesis will also be interesting. Perhaps these studies will
provide sufficient insight into the specific mucin signal(s) and the
corresponding receptors downregulating VPS production to en-
able the synthesis of novel therapeutic agents that target this path-
way. In doing so, we would add yet another weapon to our arsenal
against this devastating pathogen.
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