




different outbreaks of listeriosis associated with the following contaminated food
sources: (i) Mexican-style cheese in 2005 (a placental isolate, serotype 4b) (24), (ii) turkey
deli meat in 2006 (placental and neonatal blood isolates from an unrelated mother and
neonate, serotype 4b) (25), and (iii) hog head cheese in 2011 (a maternal blood isolate,
serotype 1/2a) (7). Only the strains from the CDC were serotyped. Among these,
serotype 4b was the most common, followed by serotypes 1/2a and 1/2b, consistent
with previous reports (5, 6) (Fig. 2B).

We compared the virulence of each clinical strain to that of 10403S in two animal
models: (i) nonpregnant mice, the standard model for the pathogenesis of systemic
listeriosis, and (ii) pregnant guinea pigs, an excellent small-animal model for pregnancy-
associated listeriosis (11). In order to minimize the number of animals required for
virulence screening, we incorporated a different, previously characterized DNA barcode
into the chromosome of each clinical isolate (26). Clinical strains were assigned to pools
a priori; the pools were balanced such that they included one of each signature tag
from the set used, and each pool included one commonly tagged and one differentially
tagged 10403S strain. Subsequently, each animal was inoculated with pools of differ-
entially tagged bacteria. We used a total of 10 pools, each containing 11 strains marked

Infect animals with 
pooled strains

Isolate bacteria from 
spleens and placentas

Quan�fy strain 
abundance

Assign virulence 
scores

Combine 
barcoded 
Listeria 
strains in 
pools

FIG 1 Experimental design. Signature-tagged L. monocytogenes strains were pooled and injected i.v. into pregnant guinea
pigs or nonpregnant mice. Each pool contained 11 barcoded strains: 9 clinical and 2 laboratory reference strains (10403S)
in the clinical strain pools and 11 laboratory reference strains in the strain 10403S pool. For each organ set (guinea pig
spleen, guinea pig placenta, mouse spleen), virulence scores were assigned to each strain on the basis of the average
relative abundance in the infected organs in comparison to that of the laboratory reference strains.

FIG 2 Clinical isolates. (A) Pregnancy-associated L. monocytogenes strains (n � 72) from 25 U.S. states were
collected by the CDC between 2000 and 2010, and 5 strains were isolated from immunocompromised patients at
MSKCC (n � 5; immunocompromised). Most of the pregnancy-associated strains were associated with sporadic
cases of listeriosis and were isolated from placental tissue (n � 68; pregnancy, sporadic). Four strains were
associated with listeriosis outbreaks in the United States (n � 4; pregnancy, outbreak). These 4 strains were isolated
from placenta (n � 2), maternal blood (n � 1), and neonatal blood (n � 1). (B) Serotype distribution of
pregnancy-associated strains.
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by unique barcodes. The control pool contained 11 10403S strains, while each of the
remaining nine pools consisted of 9 clinical strains and 2 10403S strains (pools A to I).

Profiling systemic virulence in mice and guinea pigs. Mice were infected intra-
venously (i.v.) with a total of 2 � 105 CFU/animal (10 animals/pool). The median
bacterial burden in the control spleens at 48 h postinoculation (hpi) was 7.2 � 107 CFU
(Fig. 3A). The median number of CFU in the spleens of mice inoculated with pools
containing clinical strains ranged from 5.6 � 107 CFU (pool D) to 1.9 � 108 CFU (pool
G) and did not differ significantly from the median for the control pool except in two
instances: the median bacterial burdens for pools F and G were 1.8- and 2.6-fold higher,
respectively, than the median bacterial burden for the control pool.

Using quantitative PCR (qPCR) with primers specific for each DNA barcode, we
determined the average relative abundance (RA) of each clinical strain in comparison to
that of 10403S among the bacteria recovered from each spleen (Fig. 3B). We observed
a range of virulence phenotypes both within and across the individually analyzed pools.
We found that 27 strains were significantly more virulent (Z-score � 2.0; red points in
Fig. 3B) and 18 strains were significantly less virulent (Z-score � �2.0; green points in
Fig. 3B) than 10403S. Strains with significantly different virulences were present in all
pools. Most pools contained one or more high- and low-virulence strains; only one pool
did not contain a low-virulence strain (pool C). Importantly, four sporadic clinical strains
(strains 2, 16, 21, and 39; Table S1) that were present in two different pools showed
similar virulences in their two pools, suggesting that the combination of strains within
each pool did not significantly influence the virulence score of individual strains.

We validated our approach by direct competition of select clinical isolates with
10403S in nonpregnant mice (27). We chose six clinical strains with virulence scores that
were either significantly higher or significantly lower than the virulence score of 10403S
in the pooled assay. Mice were inoculated i.v. with one clinical isolate in combination
with 10403S, and their spleens were assayed for bacteria at 48 hpi. The strains differed
in their susceptibility to erythromycin and were injected at a ratio of 1:1 and a total
number of CFU of 2 � 105/mouse. Consistent with the results of our screen, the two
hypervirulent strains, strains 13 and 79, were �5-fold more virulent than 10430S, and
strain 63 was 2-fold more virulent (Fig. 3C). In contrast, the hypovirulent strains 19, 39,
and 64 were 2- to 3-fold less virulent than 10403S. These results recapitulated the
virulence phenotypes identified in the screen.

Next, we infected pregnant Hartley guinea pigs i.v. with 1 � 108 CFU of the same
pools that we used in the mouse screen and determined the bacterial burden at 24 hpi.
We chose a time point earlier than the one used in the mouse screen to avoid the
potentially confounding effect of bacterial trafficking between the placenta and spleen
at later time points (12). Twenty-four pregnant guinea pigs were inoculated with clinical
pools (2 to 5 animals/pool); 3 animals were inoculated with the control pool. The median
bacterial burden in the spleens of the control pool was 2.4 � 106 CFU, and the bacterial
burden ranged from 3.6 � 106 CFU (pool D) to 3.1 � 107 CFU (pool C) in the spleens of
animals inoculated with pools containing clinical isolates, indicating higher overall
burdens (Fig. 4A). We determined the average relative abundance of each strain in the
guinea pig spleen normalized to that of 10403S, as described above. We identified 22
hypervirulent and 20 hypovirulent strains (Fig. 4B).

In both animal models, high- and low-virulence strains were distributed stochasti-
cally across the pools, which we expected with randomized pool assignments. In the
guinea pig spleen, the relative abundance of 10403S in the control pool exhibited a
range wider than that in the mouse (compare Fig. 3B to 4B). However, the virulence
scores of the clinical isolates were similar between mouse and guinea pig spleens. The
scores were concordant for 70% (54/77) of the strains, and among the strains for which
the scores were discordant, all but 1 were either hyper- or hypovirulent in one animal
model and intermediately virulent in the other animal model (Table S2). Only one strain
(strain 22, an outbreak strain) was hypervirulent in the murine spleen and hypovirulent
in the guinea pig spleen.
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FIG 3 Virulence screen of clinical L. monocytogenes isolates in murine spleen. CD1 mice (nonpregnant) were
infected i.v. with bacterial pools containing differentially tagged L. monocytogenes strains at equal ratios (total of
10 pools). Pools A to I contained 9 clinical strains and 2 10403S strains per pool; the 10403S pool contained 11
laboratory reference strains. Statistically significant differences in splenic bacterial burden from those in the control
group were determined using one-way ANOVA with Dunnett’s multiple comparisons posttest. ***, P � 0.0001; **,
P � 0.01; *, P � 0.05. (A) Bacterial burden in murine spleen at 48 hpi with 2 � 105 CFU per pool. For pools A to
I there were 10 mice per pool; the 10403S pool contained 15 mice. Each circle represents the bacterial burden in
one spleen, and each pool is represented by a different color. Red lines represent medians. (B) The average relative
abundance of each strain in mouse spleen was quantified by qPCR. To accurately compare values across pools, the
average relative abundance for each isolate was then normalized to the average for the reference strain in each
pool. Significance Z-scores were calculated for the deviation from the range expected on the basis of the results
for the 10403S pool (black circles). Blue circles indicate isolates with virulence similar to that of 10403S (interme-
diate virulence). Red and green circles indicate isolates with significantly higher and lower virulences, respectively.
(C) CD1 mice were infected with one erythromycin-resistant 10403S strain and one erythromycin-susceptible
untagged clinical isolate at a 1:1 ratio. The clinical isolates were chosen on the basis of their virulence scores in
panel B: 3 hypervirulent (red circles) and 3 hypovirulent (green circles) strains. Competitive indices (isolate/10403S)
were calculated for bacteria recovered from the spleen at 48 hpi. The control group was infected with two 10403S
strains that differed in their susceptibility to erythromycin (10403S/E; black circles). Each group contained 5 mice
from 2 separate experiments.
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FIG 4 Virulence screen of clinical L. monocytogenes isolates in pregnant guinea pigs (spleen and placenta).
Pregnant Hartley guinea pigs were infected i.v. with pools containing differentially tagged L. monocytogenes strains
(Fig. 3). Statistically significant differences in the bacterial burden in the spleen and placenta from those in the
control group were determined using one-way ANOVA with Dunnett’s multiple comparisons posttest. **, P � 0.01;
*, P � 0.05. (A) Bacterial burden in guinea pig spleen and placenta at 24 hpi with 108 CFU per pool. The total
number of guinea pigs was 27 with a total of 107 placentas. The number of placentas in each pool was as follows:
pool A, 12; pool B, 8; pool C, 9; pool D, 8; pool E, 15; pool F, 10; pool G, 14; pool H, 12; pool I, 8; strain 10403S pool,
11. Each filled circle represents the bacterial burden in one placenta, and each pool is represented by a different
color. Red lines represent the median number of placental CFU. Empty circles represent the median bacterial
burden in spleens from each pool. (B) The average relative abundance of each strain in guinea pig spleen was
quantified by qPCR, and significance Z-scores were calculated. Black dots indicate 10403S strains. Blue circles

(Continued on next page)
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Virulence screen in the guinea pig placenta. We evaluated the relative virulence
of the clinical isolates in the placentas (n � 107) of the inoculated guinea pigs (8 to 15
placentas/pool). The median bacterial burden in the control group was 8.2 � 105 CFU
per placenta (Fig. 4A). The median for the clinical isolate pools ranged from 1.7 � 106

CFU per placenta (pool A) to 8.4 � 106 CFU per placenta (pool C). The range of the
number of CFU across all placentas spanned 3 logs (3 � 104 to 3.8 � 107 CFU), which
is typical for placental infection and likely due to the stringent bottleneck in placental
colonization (12). Consistent with a tight bottleneck, we found the bacterial founding
population in the placenta to be significantly smaller than that in the spleen. We
calculated a median founding population of 1.1 � 105 CFU in spleens and 278 CFU in
placentas (Fig. S1).

Next, we determined the relative abundance of clinical isolates in the guinea pig
placenta in comparison to that of 10403S. We identified 14 clinical strains with high
virulence and 10 clinical strains with low virulence in the placenta (Fig. 4C). As in the
spleen, high- and low-virulence strains were distributed stochastically across the pools.
Virulence was also assayed by comparing the fraction of placentas where a strain had
a high relative abundance (RA � 1) compared to its relative abundance in guinea pig
placentas. We reasoned that hypervirulent strains would be able to infect more
placentas as well as have a greater abundance within placentas. In general, the fraction
of infected placentas did correlate strongly with the average relative abundance across
placentas (Fig. 4D). However, this analysis also revealed nine strains with a fraction of
infected placentas equivalent to or higher than that of several strains deemed more
virulent by the relative abundance parameter described above.

Comparison of the virulence scores in the placentas and/or spleens of both rodents
showed a striking degree of overlap among the three data sets. Only two strains
showed a placenta-specific virulence phenotype (strains 7 and 43). These were hyper-
virulent in the placentas (by Z-score and fraction of infected placentas) and interme-
diately virulent in the spleens of guinea pigs and mice. The five strains that were
isolated from immunocompromised, nonpregnant adults all had intermediate virulence
scores in the placentas and various virulence scores in the spleens of both animal
models (Table S1). The four outbreak strains demonstrated variable virulence scores
across all organs; only one of the outbreak strains scored hypervirulent in all organs.
However, due to the small number of these strains, it is not possible to draw any further
conclusions.

DISCUSSION

Here we report the in vivo virulence phenotypes for 77 clinical strains of L. mono-
cytogenes: 72 from pregnancy-associated listeriosis cases and 5 from nonpregnant
immunocompromised patients. Of the 72 pregnancy-associated strains, 68 were spo-
radic isolates and 4 were associated with foodborne outbreaks. Using a novel DNA
barcode approach with qPCR, we identified isolates with either a significantly higher or
a significantly lower virulence than the standard laboratory reference strain 10403S in
systemic listeriosis as well as placental infection. However, no strain showed more than
a 5-fold difference in virulence from that of 10403S. By using signature-tagged (bar-
coded) strains and qPCR, we found the 77 strains to be an even mix of hypervirulent,
hypovirulent, and intermediately virulent strains. Both outbreak and sporadic clinical
isolates were compared, but neither group was associated with any virulence pheno-
type.

FIG 4 Legend (Continued)
indicate isolates with virulence similar to that of 10403S (intermediate virulence). Red and green circles indicate
isolates with significantly higher and lower virulences, respectively. (C) Average relative abundance of each strain
in guinea pig placenta quantified and calculated as described above. (D) Correlation of the relative abundance of
each strain in the placenta with the fraction of placentas that it infected at a relative abundance higher than that
of its inoculant (RA � 1.0). The gray dashed outline encircles isolates that were not identified to be highly virulent
by relative abundance alone but for which infected fractions comparable to those for high-virulence isolates. The
color coding corresponds to that in panel C.
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Our isolates included four strains collected during recent outbreaks of foodborne
listeriosis in the United States (7, 24, 25). In contrast to the bloodstream isolates from
septicemic patients, these isolates were each associated with otherwise healthy preg-
nancies. We observed that one of these strains was highly virulent in all three assays,
while the remaining three showed varied but overall moderate virulence patterns
(strains 13, 21, 22, and 23; see Table S1 in the supplemental material). It is tempting to
assume that outbreaks are due to increases in virulence. However, in addition to
bacterial virulence, independent factors, such as the ingested dose, maternal genetics,
and overall maternal health, may dramatically influence the outcome of exposure to L.
monocytogenes. Evaluating the effect of any of these factors would require additional
studies, potentially including prospective studies, to fully characterize the maternal
status correlated with placental infection and pregnancy outcomes.

Population biology studies of pathogens have focused primarily on how virulence
evolved, outbreaks arose, and antibiotic resistance spread (15–18, 28). Fewer studies
have sought to compare the in vivo virulence of clinical strains over a period of time.
In part, this is due to the high cost of animal research and the need for several animals
per strain. In order to circumvent this, we developed a DNA barcode system. Previous
uses of signature-tagged strains of L. monocytogenes have involved understanding
bottlenecks in disseminations and alanine suppression screening to investigate viru-
lence factors (13, 26). Here, it allowed for the simultaneous use of clinical strains in order
to reduce the number of animals required to assess virulence. It has been shown
previously that the insertion of signature tags via the pPL2 integration vector does not
influence bacterial growth (26). Consistent with this, we did not observe any significant
differences in the abundance of barcoded 10403S strains in the control pools. This
technique could be even more valuable in larger, more expensive animal models, such
as nonhuman primates. Additionally, the ability to test resistance to food processing
techniques could be streamlined by using signature-tagged libraries of clinical strains.

We observed a larger variation in the distribution of strain abundances in the guinea
pig placenta than in either of the spleen data sets. This is consistent with the previously
reported bottleneck for placental infection (12, 13); therefore, we determined the
founding population in the guinea pig placenta. We calculated that approximately
1/360,000 bacteria from the inoculum will infect the placenta. Many of the hyperviru-
lent strains both had a higher abundance in the placenta and infected a greater fraction
of placentas. Therefore, in assessing virulence for organs in which an infection bottle-
neck exists, the burden according to the number of CFU alone is an incomplete
measure, and the fraction of organs infected should also be evaluated.

Clinical strains had similar virulences between the spleens and placentas. L. mono-
cytogenes strains have been analyzed by multilocus strain typing and organized into
clonal clusters (18). The most prevalent clonal clusters in bacteremia were also present
in placental and neuroinvasive strains. This suggests that successful placental coloni-
zation requires a robust systemic infection. It does not mean, however, that L. mono-
cytogenes has not evolved specialized determinants to infect the placenta. Guinea pig
models have identified genes required for successful colonization of the placenta
compared to the liver (29), and outbreak strains of some pathogens have been traced
to novel virulence factors gained through recombination or horizontal gene transfer
(30). A notable example is an enterohemorrhagic Escherichia coli O157:H7 strain that
gained Shiga toxin genes via horizontal gene transfer (31). Further, Streptococcus
species have novel virulence factors associated with accessory regions, that is, genes
not found in the core genome (32). However, L. monocytogenes has been reported to
have a highly conserved and syntenic genome (33). Out of the large number of clonal
clusters from a French Listeria monocytogenes reference library, only clonal cluster 4
(CC4) strains have so far demonstrated an increase in neuronal and placental infection
without an increase in splenic or hepatic infection, likely due to a novel carbon
metabolism operon (20). Within our set of U.S. isolates, we observed only one instance
of decreased splenic virulence and increased placental virulence. Interestingly, this
strain, LS22, was isolated from neonatal blood during a deli meat outbreak (25).
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However, another isolate recovered from the same outbreak but isolated from a
placenta (strain LS23) did not show this phenotype. Both strains were serotype 4b,
which is more commonly associated with clinical cases (34).

Our lack of strains with increased placental virulence compared to virulence for
maternal organs may be because our sample size of clinical isolates was �1/100 of that
initially used by Maury et al. (20). Both studies assayed similar numbers of strains for
virulence in animal models, but Maury et al. chose their strains as representatives of the
starting population’s clonal clusters. The tight linkage between maternal and placental
virulence and the fact that human placental infection provides no epidemic selective
advantage suggest that placenta-specific strains are likely rare.

Our survey of virulence in both sporadic and outbreak strains from pregnancy-
associated listeriosis cases shows that U.S. L. monocytogenes isolates are evenly spread
around the long-used laboratory strain 10403S, with some being more virulent and
some being less virulent in animal models. This validates the use of that laboratory
strain in pathogenesis studies. Further, the lack of a clear difference between outbreak
and sporadic strains suggests that listerial epidemiology is not a function of pathogen
virulence but is a function of other factors, likely related to individual behaviors/health
and food production practices. Finally, we found a tight coupling between the maternal
bacterial burden and placental infection, suggesting that a primary driver of placental
susceptibility is the degree of maternal infection. The DNA barcode approach is a
powerful and cost-efficient way to assess the performance of large numbers of diverse
clones in animal models.

MATERIALS AND METHODS
Bacterial strains and culture conditions. The laboratory reference strains were the 10403S

(erythromycin-susceptible) (21), DP-L3903 (erythromycin-resistant) (27), and signature-tagged 10403S
(26) strains. All L. monocytogenes clinical strains used in this study are listed in Table S1 in the
supplemental material. Seventy-two clinical isolates of L. monocytogenes from pregnancy-associated
listeriosis cases that occurred over 10 years (2000 to 2010) in 25 states in the United States were obtained
from the Centers for Disease Control and Prevention (CDC; Atlanta, GA). Of the 72 strains, 68 (94%) were
isolates from sporadic cases and 4 (6%) were from outbreaks. Five strains isolated from the blood of
immunocompromised patients at Memorial Sloan-Kettering Cancer Center were a generous gift from
Michael Glickman. The study was approved by the Institutional Review Board at the University of
California, San Francisco, where all experiments were performed (CHR no. 11-05530). Bacteria were
grown in brain heart infusion (BHI; Bacto; BD) media at 37°C. When necessary, the media were
supplemented with the following antibiotics, all of which were purchased from Sigma: chloramphenicol
(7.5 �g/ml), nalidixic acid (25 �g/ml), streptomycin (200 �g/ml), or erythromycin (2 �g/ml).

Signature tag (DNA barcode) integration into clinical strains. Unique 40-bp signature tags (STs)
were inserted into the L. monocytogenes strain genomes by site-specific integration from the pPL2 vector
as previously described (26). Briefly, pPL2 contains the PSA phage integrase and attachment site. This
allows for stable, single-copy integration in the tRNAArg gene. The tagged clinical strains generated in this
study used tags 116, 119, 191, 205, 210, 219, 231, 234, 242, 288, and 296. Integrations were confirmed
by selection for chloramphenicol resistance and PCR as previously described (35). It has been shown
previously that insertion of signature tags does not influence bacterial growth (26).

Animal infections. This study was carried out in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Research Council (36). All protocols were
reviewed and approved by the Animal Care and Use Committee at the University of California, San
Francisco (IACUC number AN079731-03A). Individual strains were grown in BHI at 37°C overnight. On the
day of infection, 11 differentially tagged strains were combined at equal ratios to generate 10 input
pools. Nine input pools (clinical pools) contained 9 clinical isolates and 2 10403S strains; one input pool
(the control pool) contained 11 differentially tagged 10403S strains. Six- to 8-week-old nonpregnant
female CD1 mice (Charles River Laboratories) were inoculated i.v. with a total of 2 � 105 CFU pooled
bacteria per animal. Pregnant Hartley guinea pigs (Elm Hill Labs, MA) were inoculated i.v. on gestational
day 35 with a total of 1 � 108 CFU pooled bacteria per animal. For the mouse experiments, each clinical
pool was injected into five mice on two separate days for a total of 10 mice per pool; the control pool
was injected into 15 mice on three separate days. Murine spleens were removed at 48 hpi. For the guinea
pig experiments, each pool was injected into 2 to 5 pregnant guinea pigs, depending on the number of
fetuses per dam. The total number of guinea pigs injected with clinical pools was 24 with a total of 96
placentas. The control pool was injected into 3 guinea pigs with a total of 11 placentas. Guinea pig
spleens and placentas were removed at 24 hpi. Organs were homogenized in 0.2% Igepal (Sigma) with
a tissue grinder. Aliquots from each output pool were plated on BHI agar plates containing 25 �g/ml
nalidixic acid. The numbers of CFU per organ were enumerated, and at least 104 colonies from each
output pool were scraped off the plates and resuspended in phosphate-buffered saline. Aliquots of these
suspensions were stored at �20°C. Input pools were prepared in the same fashion.
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qPCR. Genomic DNA was extracted from input and output pools using a Gram-positive bacterial DNA
purification kit (Epicentre), substituting mutanolysin (5 U/�l; Sigma) for lysozyme. Relative quantification
by qPCR for each signature tag was achieved with previously published primer sets: signature tag-specific
forward primers and the common pPL2-395R reverse primer (26). In addition, one primer set (primers
LIM2 and LIMRE) was directed against iap, a gene used as an internal reference (37). All qPCRs were
performed in a Roche LightCycler 480 qPCR machine. Each 20-�l reaction mixture contained 10 �l
SsoAdvanced SYBR green universal supermix (Bio-Rad), 200 nM each primer, nuclease-free water, and
template DNA. A total of 20 ng template DNA was used for experimental samples. DNA extracted from
10403S signature-tagged reference strains was used to construct qPCR standard curves for each
signature tag primer set with template amounts of 100 ng, 10 ng, 1 ng, 0.1 ng, and 0.01 ng. Cycling
conditions were as follows: 98°C for 2 min and 98°C for 5 s, 60°C for 20 s, and 68°C for 20 s for 40 cycles,
followed by a melting curve cycle of 98°C for 15 s and 60°C for 30 s and a ramp to 98°C in intervals of
0.29°C/s. For each animal species, duplicate qPCRs for the standard curve dilutions, input and output
pools, and template-free controls were run in parallel on a single 384-well plate per primer set.

The relative abundance of each signature tag in each output sample was determined in relation to
that of the reference gene iap and the respective input pool. Quantification of cycle numbers and primer
efficiencies were obtained using LightCycler software (release 1.5.0 SP3; Roche). Relative abundance (RA)
values were calculated using the following equation, which accounts for different primer efficiencies (38):
RA � ��Eiap

Cqiap�sample�⁄�EST
CqST�sample��⁄��Eiap

Cqiap�input�⁄�EST
CqST�input��, where Eiap and EST are the efficiency

values calculated from the standard curves for the iap- and ST-specific primers, respectively and
Cqiap-sample, CqST-sample, Cqiap-input, and CqST-input are the quantification cycle values for the iap and
ST samples and the iap and ST inputs, respectively.

Determination of virulence. Within each output pool, the average relative abundance was calcu-
lated for each clinical strain and divided by the average relative abundance for the two reference strains
in the same output pool. This yielded an output pool-specific, normalized relative abundance for each
clinical isolate. The standard deviation for the normalized abundances was calculated using the control
group, which consisted of 11 differentially tagged 10403S strains. A Z-score describing the normalized
relative abundance for each strain compared to that for 10403S was then calculated by subtracting the
mean for the control group relative abundance and dividing by the standard deviation for the control
group relative abundance. Strains that were significantly more or less abundant (P � 0.01) were
identified according to a normal distribution of Z-scores.

Direct competition assay. Six- to 8-week-old female CD1 mice (Charles River Laboratories) were
inoculated i.v. with 2 � 105 CFU of one clinical isolate (erythromycin susceptible) and 10403S (erythro-
mycin resistant) at a 1:1 ratio. Bacteria were recovered from the spleen at 48 hpi and enumerated, and
then individual colonies were tested for differential susceptibility to erythromycin to represent the
susceptibility of the clinical strain versus that of the 10403S reference strain. The control group was
injected with a 1:1 ratio of two 10403S strains that differed in their susceptibility to erythromycin.
Statistical significance was determined by one-way analysis of variance (ANOVA) with Dunnett’s multiple
comparisons posttest.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/IAI
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