

















MyD88-Dependent Host Responses to Plague

FIG 5 Myd88~—/— mice that succumb to Y. pestis CO92 infection have reduced inflammatory foci and tissue necrosis. Lungs
(A and D), livers (B and E), and spleens (C and F) from Myd88~/~ (A to C) and C57BL/6 (D to F) mice that were challenged
with Y. pestis CO92 and succumbed to disease were fixed in formalin and processed for histology. (A to F) Representative
lesions; (G) severity scoring of inflammatory infiltrate and necrosis. Bars indicate standard deviations; data were collected
in 3 independent trials (n = 14 WT mice, n = 20 Myd88—/~ mice). Scale bar, 100 um. Data were analyzed by an unpaired
Student’s t test. ****, P < 0.0001; NS, not significant.

DISCUSSION

For many years, pulmonary infection by Y. pestis has been described as a biphasic
inflammatory response driven by the T3SS, yet the underlying host factors that are
targeted to mediate this response are not known (28). Here we demonstrated that
MyD88 is at the center of this phenomenon. We showed that both phases of the
biphasic inflammatory response involve MyD88. Very early MyD88-dependent inflam-
mation was limited to KC, a neutrophil chemokine that we previously showed stimu-
lates a protective neutrophil response during pulmonary Y. pestis infection. Indeed, at
18 hpi, Myd88—/~ mice had increased bacterial titers in the lungs compared to WT mice.
Yet this response allowed the escape of a small population of bacteria into a protected
replicative niche. This event may be sufficient to trigger the immune suppressive phase.
We think it likely that bacterial growth further stimulates MyD88-dependent inflam-
mation that is ineffective. Overall, these data indicate a major role for MyD88 in the
biphasic inflammatory response to Y. pestis. In contrast, the dissemination and subse-
quent development of secondary septicemic plague are not exacerbated by the MyD88
response, and in fact, it is protective against disseminated infection.

MyD88 is known to mediate signaling downstream of TLR and IL-1R family proteins,
each able to activate the expression of pro- and anti-inflammatory cytokines (3). There
are 13 TLRs and 11 IL-1R family members, some of which are antagonists that bind
cytokines but lack the TIR domain. Although these proteins share the common ability
to activate the formation of the myddosome, they serve distinct functions in cells and
tissues. Tissue and inflammatory macrophages are primary targets of the Y. pestis T3SS
in vivo, and alveolar macrophages become depleted in the early stage of infection (20,
23). The role of macrophage depletion has not been experimentally determined but is
known to be caused by the bacterial T3SS. As T3SS effectors are known to stimulate
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FIG 6 Pulmonary responses during disease phase are primarily MyD88 independent. Groups of 5 to 10
C57BL/6 or Myd88—/— mice were challenged by intranasal infection with 2,000 CFU of Y. pestis CO92. On
day 3 postinfection, mice were euthanized, blood was collected, lungs were removed and homogenized
in sterile PBS, and serum and lung homogenates were analyzed for the following cytokines by a Luminex
multiplex assay: IL-18 (A), IL-6 (B), IL-10 (C), TNF-« (D), RANTES (E), and IFN-y (F). n = 20 (B and D to F)
or n=10 (A and C) mice per group, with data collected in 2 to 4 independent trials. Bars represent
standard errors. Data from all trials were combined and analyzed by the Mann-Whitney test. ****,
P < 0.0001; NS, not significant.

inflammatory cell death, the prevailing model suggests that macrophage death, and
the associated release of IL-18 and IL-18, is an important switch in stimulating the
proinflammatory phase of the biphasic response.

As IL-1 and IL-18 receptors have TIR domains that activate MyD88, it is likely that the
Myd88—/~ mice have lost IL-18-dependent responses as well as IL-1-dependent re-
sponses. Loss of IL-18R signaling is known to reduce IFN-y expression by NK cells in the
lungs during bacterial infection; however, IFN-y may not play a major role in defense
against plague (29, 30). In addition, IL-18R activates expression of CXC chemokines such
as KC (4). Consistent with the model described above, we observed coregulation of KC
and IFN-y in a MyD88-dependent manner at 48 hpi. Yet only KC was MyD88 dependent
at 18 hpi. This observation suggests that the very early inflammatory response, though
still MyD88 dependent, occurs through a distinct mechanism. In addition to inducing
proinflammatory cytokines through NF-«kB and mitogen-activated protein kinase
(MAPK) signaling, IL-1 and IL-18 receptor signaling can also induce lipid mediators such
as prostaglandin E2 (PGE2), which induces increased tissue-damaging nitric oxide (NO)
production (31). Since Myd88~~ mice typically showed reduced tissue necrosis, PGE2
and/or other lipid mediators may also contribute to the pathological role of MyD88.

Therapeutic inhibition of the early MyD88 inflammatory response or its resulting
damage to lung tissue would be expected to prevent development of bronchopneu-
monia. However, upon bacterial dissemination to secondary tissues, the inhibition of
MyD88 would be detrimental, promoting bacterial replication and systemic disease.
Anti-inflammatory treatments combined with antibiotics or other antibacterial treat-
ment would be predicted to be synergistic in preventing the lethality of plague when
given in the early stage. Recent studies in the murine bubonic plague model suggest
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that this is indeed the case (32). Corticosteroid treatment combined with neutralizing
antibodies to Y. pestis improved survival. Importantly, in this study, the corticosteroid
treatment reduced the recruitment of neutrophils to infected tissues yet bacterial
growth was decreased. Consistent with the data reported here, these results emphasize
the complexity of the host-pathogen interface during Y. pestis infection and the delicate
balance necessary for an effective inflammatory response.

MATERIALS AND METHODS

Bacterial strains. Yersinia pestis strains were routinely grown fresh from frozen stock by streaking for
isolation onto heart infusion agar (HIA) plates supplemented with 0.005% (wt/vol) Congo red and 0.2%
(wt/vol) galactose to verify retention of the pigmentation locus (33-36). For intranasal challenge studies,
a single colony was used to inoculate heart infusion broth (HIB) supplemented with 2.5mM CaCl, and
grown for 18 to 24 h at 37°C and 125 rpm. All work with live, wild-type, pgm* Y. pestis strain CO92
bacteria was performed in a select agent-authorized biosafety level 3 (BSL3) laboratory.

Vertebrate animals. All animal procedures were performed in compliance with the Office of
Laboratory Animal Welfare and the National Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the University of Missouri Animal Care and Use Committee.

C57BL/6J mice were the inbred strain background of the MyD88—/~ mice (both strains obtained from
Jackson Laboratories, Bar Harbor, ME). Mice were bred in-house at the University of Missouri. Male and
female wild-type and mutant mice, ranging from 15 to 30g in weight, were used for challenge
experiments in approximately equal numbers. To model primary pneumonic plague, mice were chal-
lenged with a target dose of 3 to 6 LD, (1,000 to 2,000 CFU) of Y. pestis CO92 by intranasal inoculation
(37). The actual infection dose was verified by plating in all experiments. All infected mice were
monitored by daily assignment of health scores, which involved assessments of their appearance and
activity. Animals that survived to the end of the 14-day observation period or were identified as
moribund (defined by pronounced neurologic signs, inactivity, and severe weakness) were euthanized by
CO, asphyxiation, followed by bilateral pneumothorax or cervical dislocation, methods approved by the
American Veterinary Medical Association Guidelines on Euthanasia.

Infection studies. At the hours or days postinfection (hpi or dpi) indicated in the figure legends,
infected mice were euthanized, and blood, along with the indicated tissues, was collected. Tissues were
homogenized in sterile phosphate-buffered saline (PBS) and, along with blood, serially diluted and plated
in duplicate on HIA for bacterial enumeration. After plating, serum was collected following centrifugation
and, along with lung homogenates, treated with antibiotics to inactivate Y. pestis and then stored at
—80°C until analysis. Alternatively, mice were euthanized and tissues were collected for histology. Tissues
were fixed in 10% formalin for at least 48 h and then further processed for paraffin embedment and cut
into 5-um sections. Tissue sections were stained with hematoxylin and eosin, and coverslips were
permanently affixed to stained slides. Sample identities were blinded for analysis. Severity scoring (0 to
3) was based on the size of necrotic and inflammatory lesions and the percentage of affected tissue, with
a score of 3 representing the most severe. Serum and lung homogenate cytokines were measured by a
Luminex multiplex assay (Sigma-Millipore, MO, USA) or by ELISA (PBL Assay Sciences, NJ, USA; R&D
Systems, MN, USA).

Statistical evaluation. Data from all trials were combined and analyzed for statistical significance.
Statistical significance was evaluated using Prism 7 (GraphPad Software, La Jolla, CA). Specific statistical
evaluations are indicated in the figure legends; significance was concluded when the P was <0.05.
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