Chlamydia
- Cellular Microbiology: Pathogen-Host Cell Molecular InteractionsAdoptive Transfer of Group 3-Like Innate Lymphoid Cells Restores Mouse Colon Resistance to Colonization of a Gamma Interferon-Susceptible Chlamydia muridarum Mutant
The obligate intracellular bacterium Chlamydia muridarum can colonize the mouse colon for a long period, but a gamma interferon (IFN-γ)-susceptible mutant clone fails to do so. Nevertheless, the mutant’s colonization is rescued in mice deficient in interleukin-7 receptor (IL-7R) (lacking both lymphocytes and innate lymphoid cells [ILCs]) or IFN-γ but not in mice...
- Microbial Immunity and Vaccines | SpotlightChlamydia-Specific IgA Secretion in the Female Reproductive Tract Induced via Per-Oral Immunization Confers Protection against Primary Chlamydia Challenge
Chlamydia trachomatis is an obligate intracellular pathogen that causes sexually transmitted disease. In women, chlamydial infections may cause pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The role of antibodies in protection against a primary Chlamydia infection is unclear and was a focus of this work. Using the...
- Cellular Microbiology: Pathogen-Host Cell Molecular InteractionsHost and Bacterial Glycolysis during Chlamydia trachomatis Infection
The obligate intracellular pathogen Chlamydia trachomatis is the leading cause of noncongenital blindness and causative agent of the most common sexually transmitted infection of bacterial origin. With a reduced genome, C. trachomatis is dependent on its host for survival, in part due to a need for...
- Bacterial InfectionsEffects of Immunomodulatory Drug Fingolimod (FTY720) on Chlamydia Dissemination and Pathogenesis
Fingolimod (FTY720), an FDA-approved immunomodulatory drug for treating multiple sclerosis, is an agonist of sphingosine-1-phosphate receptor (S1PR), which has been used as a research tool for inhibiting immune cell trafficking. FTY720 was recently reported to inhibit Chlamydia dissemination. Since genital Chlamydia spreading to the gastrointestinal tract correlated with its pathogenicity in the upper genital tract, we...
- Molecular PathogenesisSuppression of Chlamydial Pathogenicity by Nonspecific CD8+ T Lymphocytes
Chlamydia trachomatis, a leading infectious cause of tubal infertility, induces upper genital tract pathology, such as hydrosalpinx, which can be modeled with Chlamydia muridarum infection in mice. Following C. muridarum...
- Host Response and InflammationEndocervical miRNA Expression Profiles in Women Positive for Chlamydia trachomatis with Clinical Signs and/or Symptoms Are Distinct from Those in Women Positive for Chlamydia trachomatis without Signs and Symptoms
Chlamydia trachomatis is the leading cause of sexually transmitted infections that may progress to pelvic inflammatory disease and infertility. No effective vaccine exists for Chlamydia, nor are there biomarkers available that readily predict disease progression. In this cross-sectional pilot study, we recruited symptomatic and asymptomatic women with...
- Host Response and InflammationHuman Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection
Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial...
- Host Response and InflammationChlamydia Lipooligosaccharide Has Varied Direct and Indirect Roles in Evading both Innate and Adaptive Host Immune Responses
Chlamydia bacteria are obligate intracellular pathogens which can cause a variety of disease in humans and other vertebrate animals. To successfully complete its life cycle, Chlamydia must evade both intracellular innate immune responses and adaptive cytotoxic T cell responses. Here, we report on the role of the chlamydial lipooligosaccharide (LOS) in evading the immune response. Chlamydia infection is known...
- Host-Associated Microbial CommunitiesChlamydia Deficient in Plasmid-Encoded pGP3 Is Prevented from Spreading to Large Intestine
The cryptic plasmid pCM is critical for chlamydial colonization in the gastrointestinal tract. Nevertheless, orally inoculated plasmid-free Chlamydia sp. was still able to colonize the gut. Surprisingly, orally inoculated Chlamydia sp. deficient in only plasmid-encoded pGP3 was no longer able to colonize the gut. A comparison of live organism recoveries from individual gastrointestinal tissues revealed that pGP3-...
- Cellular Microbiology: Pathogen-Host Cell Molecular InteractionsApoptosis Functions in Defense against Infection of Mammalian Cells with Environmental Chlamydiae
Apoptotic cell death can be an efficient defense reaction of mammalian cells infected with obligate intracellular pathogens; the host cell dies and the pathogen cannot replicate. While this is well established for viruses, there is little experimental support for such a concept in bacterial infections. All Chlamydiales are obligate intracellular bacteria, and different species infect vastly different hosts....