neutrophil
- Fungal and Parasitic InfectionsInterleukin-8 Receptor 2 (IL-8R2)-Deficient Mice Are More Resistant to Pulmonary Coccidioidomycosis than Control Mice
The pathology of human coccidioidomycosis is granulomatous inflammation with many neutrophils surrounding ruptured spherules, but the chemotactic pathways that draw neutrophils into the infected tissues are not known. We previously showed that formalin-killed spherules (FKS) stimulate mouse macrophages to secret macrophage inflammatory protein 2 (MIP-2), which suggested that CXC ELR+ chemokines might be involved in neutrophil...
- Cellular Microbiology: Pathogen-Host Cell Molecular InteractionsCigarette Smoke Exposure Promotes Virulence of Pseudomonas aeruginosa and Induces Resistance to Neutrophil Killing
It is widely known that cigarette smoke damages host defenses and increases susceptibility to bacterial infections. Pseudomonas aeruginosa, a Gram-negative bacterium that commonly colonizes the airways of smokers and patients with chronic lung disease, can cause pneumonia and sepsis and can trigger exacerbations of lung diseases....
- Bacterial InfectionsLeukocidins and the Nuclease Nuc Prevent Neutrophil-Mediated Killing of Staphylococcus aureus Biofilms
Bacterial biofilms are linked with chronic infections and have properties distinct from those of planktonic, single-celled bacteria. The virulence mechanisms associated with Staphylococcus aureus biofilms are becoming better understood. Human neutrophils are critical for the innate immune response to S....
- Host Response and InflammationSurvival of Streptococcus suis in Porcine Blood Is Limited by the Antibody- and Complement-Dependent Oxidative Burst Response of Granulocytes
Bacteremia is a hallmark of invasive Streptococcus suis infections of pigs, often leading to septicemia, meningitis, or arthritis. An important defense mechanism of neutrophils is the generation of reactive oxygen species (ROS). In this study, we report high levels of ROS production by blood granulocytes after intravenous infection of a pig with high levels of...
- Host Response and Inflammationl-Serine Lowers the Inflammatory Responses during Pasteurella multocida Infection
Pasteurella multocida causes a variety of infectious diseases in various species of mammals and birds, resulting in enormous economic loss to the modern livestock and poultry industry. However, the mechanism of host-pathogen interaction is unclear. Here, we found that l-serine levels were significantly decreased in murine lungs infected with...
- Bacterial InfectionsDirect Microscopic Observation of Human Neutrophil-Staphylococcus aureus Interaction In Vitro Suggests a Potential Mechanism for Initiation of Biofilm Infection on an Implanted Medical Device
The ability of human neutrophils to clear newly attached Staphylococcus aureus bacteria from a serum-coated glass surface was examined in vitro using time-lapse confocal scanning laser microscopy. Quantitative image analysis was used to measure the temporal change in bacterial biomass, neutrophil motility, and fraction of the surface area policed by...
- Molecular PathogenesisTissue Tropism in Streptococcal Infection: Wild-Type M1T1 Group A Streptococcus Is Efficiently Cleared by Neutrophils Using an NADPH Oxidase-Dependent Mechanism in the Lung but Not in the Skin
Group A Streptococcus (GAS) commonly causes pharyngitis and skin infections. Little is known why streptococcal pharyngitis usually does not lead to pneumonia and why the skin is a favorite niche for GAS. To partially address these questions, the effectiveness of neutrophils in clearing wild-type (wt) M1T1 GAS strain MGAS2221 from the lung and from the skin was examined in murine models of intratracheal pneumonia and...
- Cellular Microbiology: Pathogen-Host Cell Molecular InteractionsNovel Assay To Characterize Neutrophil Responses to Oral Biofilms
Neutrophils, the most numerous leukocytes, play an important role in maintaining oral health through interactions with oral microbial biofilms. Both neutrophil hyperactivity and the bacterial subversion of neutrophil responses can cause inflammation-mediated tissue damage like that seen in periodontal disease.